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Nanofoam-based targets enable non-linear resonant regimes of laser-matter

interaction owing to their nanostructure and density. Double-layer targets (DLTs)
Develop an accurate simulation T o o o
Nanostructure: Laser pulse interacting with the framework for laser-nanofoam Diffusion-limited cluster- Particle-in-cell kinetic
nanofoam layer that drives interaction cluster aggregation codes

Enables volumetric particle heating due to increased
propagation of the laser in the material

resonant Processes

Scattering and electron ejection by the laser among the sub-
wavelength nanoparticles

Assessment of the physical processes
during laser-nanofoam interaction
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Density:

Between solid and gases (~ mg/cm?3) enables near-critical
resonant regime for commonly used lasers (~ 1-um wavelength).

Solid layer driving laser-pulse
reflection and ion acceleration

through target normal sheath

Near-critical regime defined €omew? _ 111 %1021 [um? cm™?] acceleration (TNSA)
by critical density:

Ne = ez 22[um?2]
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