Smilei)

4th Smilei user & training workshop 8-10 November 2023, ELI Beamlines

Numerical Investigation of Laser-Driven Radiation Sources with Double-Layer Targets (DLTs) using Particle in-Cell (PIC) codes

K. Ambrogioni, M. Galbiati, A. Maffini, F. Mirani, L. F. C. Monaco & M. Passoni

Laser-Plasma Team

Permanent Staff

V. Russo

M. Passoni

A. Maffini

www.ensure.polimi.it NanoLab

Post-Docs

F. Mirani

D. Vavassori

D. Orecchia

PhD Students

K. Ambrogioni M.S. Galli De Magistris

L. F. C. Monaco

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Outline

- Radiation Generation via Ultra-Intense Laser-Plasma Interaction
 - Use of Smilei for Modelling Advanced Configurations
- Enhanced Proton Acceleration from Tens of TW Lasers with DLTs
 - Proton Acceleration from sub-TW Lasers with DLTs
 - Pair-Production via Non-Linear Breit-Wheeler in DLTs
 - Conclusions and Perspectives

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Introduction to Ultra-Intense Laser-Matter Interaction

$$a_0 = \frac{e\sqrt{2I}}{m_e\omega c^{\frac{3}{2}}} > 1$$

Different interaction regimes:

- Gas: $n_e \ll n_c$
- Near-critical: $n_e \cong n_c$

• Solid: $n_e \gg n_c$

POLITECNICO MILANO 1863 | Kevin Ambrogioni | SMILEI Wo

SMILEI Workshop – 8th November 2023

Interaction with Solid Targets: Ion Acceleration

Electron heating and expansion driving Target Normal Sheath Acceleration (TNSA)

Effective on low-mass contaminants

Dependent on the intensity of the laser

<u>Standard</u>: thin solid targets ($\sim 1 \mu m$)

 Possible use of advanced targets to enhance laser-plasma coupling

Double-Layer Targets: Enhanced TNSA and Secondary Radiation

oniomnom

lons

Near-critical layer (~ critical density n_c) on top of the solid foil to create the **Double-Layer Target (DLT)**

- Enhancement of absorbed laser energy
- Increase of the accelerated ion energy
- Non-Linear Inverse Compton Scattering (NICS) in the low-density layer
- Enhanced Bremsstrahlung in high-Z solid foils
- Non-Linear Breit-Wheeler and Bethe-Heitler pair production
- Increased neutron generation and radioisotope production

1. Prencipe et al., Efficient laser-driven proton and Bremsstrahlung generation from cluster-assembled foam targets , New Journal of Physics, 23, 093015 (2021)

POLITECNICO MILANO 1863 | Kevin Ambrogioni | SMILEI Workshop – 8th November 2023

Double-Layer Targets: Near-Critical Layer

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Double-Layer Targets: Near-Critical Layer

Fractal structure composed of **sub-wavelength nanoparticles** (few nm) stick together to form clusters. Ensemble of clusters generates the foam.

Cluster dimension depends on deposition method and defined by gyration radius (R_a)

Gyration radius ~ number of particles per cluster via fractal scaling

A. Maffini et al., Pulsed Laser Deposition of Carbon Nanofoam, Applied Sufrace Science, 599, 153859 (2022)

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Motivations of the Research

Double-layer targets (DLTs):

allow efficient

laser-driven acceleration

of particles

pose bases for
 secondary radiation
 generation in
 laser-plasma interaction

Potentially compact and cheap radiation sources
 Multiple tuneable radiation fields

Possible use of table-top laser systems (TW or sub-TW class)

Multipurpose sources allowing different radiation fields

POLITECNICO MILANO 1863 Kevin Ambrogioni

oni SMILEI Workshop – 8th November 2023

Use of Smilei) for Simulations of Laser-Driven Radiation Generation

Numerical Particle-in Cell tools enable deep understanding of physics and parameter optimisation

Smilei) allows to study additional processes thanks to appropriate Monte Carlo modules:

- Ionisation of the target
- Pair production
- Photon generation

Smilei) allows to introduce external input file to simulate the real structure of DLTs

Species(...
 ionization_model = 'Tunnel',
 ionization_electrons = 'ele',
 ...
 radiation_photon_species = 'photon',
 ...
 multiphoton_Breit_Wheeler = ['ele', 'pos'],
 ...
)

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Double-Layer Targets: Photon and Pair Generation

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Double-Layer Targets: Photon and Pair Generation

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Double-Layer Targets: Photon and Pair Generation

POLITECNICO MILANO 1863 Kevin Ambrogioni S

SMILEI Workshop – 8th November 2023 10

Modelling of Nanostructured Foams

Modelling of fractal foam via the Diffusion Limited Cluster-Cluster Aggregation (DLCCA)

Nanoparticles are aggregated to form clusters that diffuse and stick to each other

- Foam thickness increases linearly with the number of deposited clusters
- Foam mean density ρ determined by the number N of nanoparticles per cluster and by the nanoparticle density ρ_{np}

 $ho=k
ho_{np}N^{-0,556}$ For

For our DLCCA model k=0,497

Ambrogioni K., Numerical Modelling of Laser-Driven Proton Acceleration with Nanostructured Targets and TW-Class Lasers, MSc. Thesis (2023)

POLITECNICO MILANO 1863 | Kevin Ambrogioni | SMILEI Workshop – 8th November 2023

Enhanced Proton Acceleration from Tens of TW Lasers with DLTs

3D simulation for the optimal DLT in **Smile:)** on **CINECA** - Galileo100 including <u>realistic foam-like structure</u> of the near-critical layer. Foam generated with proprietary code. The target simulated as a **completely ionised plasma**.

Simulation Parameters		Laser Parameters		Foam Parameters		Solid Foil Parameters	
Box Size [x;y;z] (µm)	[70;50;50]	a ₀	10	Element	С	Element	Al
		Intensity (W/cm ²)	2,0 x 10 ²⁰	Mean Density	[2,6;0,43]	Density (n _c) [e;i]	[80;6,2]
Points per µm [x;y;z]	[25;25;25]	Laser Spot (µm)	2,4	(n _c) [e;i]		Particle per Cell [e;i]	[10;1]
CFL	0,98	Wavelength (µm)	0,8	Nanoparticle Density (n _c) [e;i]	[20,8;3,5]	Thickness (µm)	0,2
Duration (fs)	225	Pulse Duration (fs)	30	Particles per Cell	[20.2]	Contaminant Layer Parameters	
Processing Units	1536	Polarisation	Linear (y-plane)	[e;i]	[20,2]	Element	Н
Boris pusher, Silver- Müller/Absorbing in x, Periodic/Periodic in [y,z], Load Balancing		Incidence Angle	0°	Thickness (µm)	4,0	Density (n _c) [e;i]	[10;10]
		Shape in Time	Gaussian	Nanoparticle Radius (nm)	40	Particle per Cell [e;i]	[100;100]
		Shape in Space	Gaussian			Thickness (µm)	0,05

Maffini A. et al., Towards compact laser-driven accelerators: exploring the potential of advanced double-layer targets, EPJ Tech. Instrum., 10, 15 (2023)

POLITECNICO MILANO 1863 | Kevin Ambrogioni | SMILEI Workshop – 8th November 2023

Enhanced Proton Acceleration from Tens of TW Lasers with DLTs

Maffini A. et al., Towards compact laser-driven accelerators: exploring the potential of advanced double-layer targets, EPJ Tech. Instrum., 10, 15 (2023)

13

POLITECNICO MILANO 1863 | Kevin Ambrogioni | SMILEI Workshop – 8th November 2023 |

2D/3D simulations for the optimal DLT in **Smile:**) on **CINECA** - Galileo100 including <u>realistic foam-like structure</u> of the nearcritical layer. Foam generated with proprietary code for **Diffusion-Limited Cluster-Cluster Aggregation (DLCCA)**.

Simulation Parameters		Laser Parameters		Form Parameters		Solid Foil Parameters	
						Element	٨١
Box Size [x;y;z]	2D [100,56]	a	1.4	Element	С	Liemeni	AI
(µm)	3D [70;50;50]	Intensity (W/cm²)	4,0 x 10 ¹⁸	Mean Density	[0,16]	Density (n _c) [i]	2D [34,6] 3D [6,15]
Points per µm	2D [65,65]			(n _c) [i]			
[x;y;z] 3D	3D [25;25;25]	Laser Spot (µm)	3,0	Napoparticle	[1 2]	Thickness (µm)	1,0
CFL	0,98	Wavelength (µm)	0,8	Density (n_c) [i] (if	[-,2]	Particles per	2D [~5, ~30]
Duration (fs) 2D 500 3D 225	2D 500			nanostructured)		cen [i/e]	50[1,0]
	Pulse Duration (fs)	10	Thickness (µm)	3,0	Contaminant Layer Parameters		
Processing Units	2D 288	Polarisation	Linear (y-plane)	Nanoparticle	25	Element	Н
3D 1536 Boris pusher, PML/Absorbing in x, Periodic/Periodic in [y,z], Load Balancing		Incidence Angle	0°	Radius (nm) (if nanostructured)		Density (n _c) [e,i]	[10,10]
		Shape in Time	Gaussian	Particles per cell [i,e]	2D [~4, ~10] 3D [2, 0]	Thickness (µm)	0,05
		Shape in Space	Gaussian			Particles per cell [i.e]	2D [100, 100] 3D [60, 60]

Ambrogioni K., Numerical Modelling of Laser-Driven Proton Acceleration with Nanostructured Targets and TW-Class Lasers, MSc. Thesis (2023)

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Three 2D simulations to evaluate effects of tunnel ionisation and nanostructure

- (a) Homogeneous foam w/ tunnel ionisation: C: 0-times ionised, AI: 3-times ionised
- (b) Nanostructured foam w/ tunnel ionisation: C: 0-times ionised, AI: 3-times ionised
- (c) Nanostructured foam w/o tunnel ionisation: C: 4-times ionised, AI: 3,5-times ionised

Ambrogioni K., Numerical Modelling of Laser-Driven Proton Acceleration with Nanostructured Targets and TW-Class Lasers, MSc. Thesis (2023)

Kevin Ambrogioni | SMILEI Workshop – 8th November 2023

POLITECNICO MILANO 1863

Ambrogioni K., Numerical Modelling of Laser-Driven Proton Acceleration with Nanostructured Targets and TW-Class Lasers, MSc. Thesis (2023)

17

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Kevin Ambrogioni

POLITECNICO MILANO 1863

Ambrogioni K., Numerical Modelling of Laser-Driven Proton Acceleration with Nanostructured Targets and TW-Class Lasers, MSc. Thesis (2023)

SMILEI Workshop – 8th November 2023

Kevin Ambrogioni

POLITECNICO MILANO 1863

Foam ionisation

Almost complete ionisation of the foam (5-times-ionised) in laser channel

Dimensionality effects in ionisation

Overall degree of ionisation lower in 3D with respect to 2D relevant simulation

Ambrogioni K., Numerical Modelling of Laser-Driven Proton Acceleration with Nanostructured Targets and TW-Class Lasers, MSc. Thesis (2023)

SMILEI Workshop – 8th November 2023

2D simulation for DLT in **Smile:**) on **CINECA** - Galileo100 <u>neglecting nanostructure</u>, including <u>Non-linear Inverse Compton</u> <u>Scattering</u> for photon production and <u>Non-Linear Breit-Wheeler</u> pair production. The target was simulated as a completely ionised plasma.

Simulation Parameters		Laser Parameters		Foam Parameters		Solid Foil Parameters	
Box Size [x;y] (µm)	[70;50]	a ₀	150	Element	С	Element	Al
		Intensity (W/cm ²)	4,8 x 10 ²²	Density (n.) [e·i]	[2 0.0 33]	Density (n _c) [e;i]	[450;34,6]
Points per µm [x;y] [64	[64;64]	Laser Spot (µm)	3.0		[2,0,0,00]	Particle per Cell [e;i]	[30;6]
CFL	0,95	Wavelength (µm)	0,8	Particles per Cell [e;i]	[5;1]	Thickness (µm)	1,0
Duration (fs)	350	Pulse Duration (fs)	30			Contaminant Layer Parameters	
Processing Units	1536	Polarisation	Linear (y-plane)	inickness (µm)	15,0	Element	Н
Boris pusher, PML/Absorbing in x, Periodic/Periodic in y, Load Balancing		Incidence Angle	0°	Photon Parameters De		Density (n _c) [e;i]	[10;10]
		Shape in Time	Gaussian	Photon Sample	3	Particle per Cell [e;i]	[100;100]
		Shape in Space	Gaussian	Photon Threshold	$2m_ec^2$	Thickness (µm)	0,05

Monaco L. F. C., Numerical Study of Positron Production in Laser-Plasma Interaction with Double-Layer Targets via Non-linear Breit-Wheeler Process, MSc. Thesis (in-progress)

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

POLITECNICO MILANO 1863 | Kevin Ambrogioni | SMILEI Workshop – 8th November 2023 |

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Analytical sh spectrum fron

(a)

Energy converted into pairs (J/m) 0 0 00 00 00

10 -

0 -

0

Time (fs)

ape of positron
n Breit-Wheeler:

$$\frac{dN_{e^+}}{dE_{e^+}} = \frac{\alpha}{\sqrt{3}\pi\hbar} \int_{t_0}^t \sum_{E_Y > 2m_ec^2 + E_{e^+}} \left\{ \frac{w_Y}{\gamma_Y(\gamma_Y - 2)} \left[\int_y^{+\infty} K_{1/3} \left(\frac{2}{3} x \right) dx - (2 - \chi_Y y) K_{2/3} \left(\frac{2}{3} y \right) \right] \right\} dt$$
Total energy of pairs
evolution
Smilei
Theory

$$\int_{t_0}^{t_0} \int_{t_0}^{t_0} \int_{t_$$

Energy (MeV)

Monaco L. F. C., Numerical Study of Positron Production in Laser-Plasma Interaction with Double-Layer Targets via Non-linear Breit-Wheeler Process, MSc. Thesis (in-progress)

POLITECNICO MILANO 1863 SMILEI Workshop – 8th November 2023 Kevin Ambrogioni

2D simulations for DLT in **Smilei)** on **CINECA**- Galileo100 <u>neglecting nanostructure</u>, including <u>Non-linear Inverse Compton</u> <u>Scattering</u> for photon production and <u>Non-Linear Breit-Wheeler</u> pair production. The target was simulated as a completely ionised plasma.

Simulation Parameters		Laser Parameters		Foam Parameters		Solid Foil Parameters		
Box Size [x;y] (µm)	[70;50]	a ₀	150	Element	С	Element	Al/Au/Pb	
Points per µm [x;y]	[64;64]	Intensity (W/cm ²)	4,8 x 10 ²²	Density (n _c) [e;i]	[2/6/12; 0,5/1/2]	Density (n _c) [e]	[100-586]	
		Laser Spot (µm)	3.0			Particle per Cell [e;i]	[30;6]	
CFL	0,95	Wavelength (µm)	0,8	Particles per Cell	[4/12/12;	Thickness (µm)	2,0/5,0	
Duration (fs)	350	Pulse Duration (fs)	30		10 0 00 0	Contaminant Layer F	arameters	
Processing Units	1536	Polarisation	Linear (y-plane)	Thickness (µm)	12,0-39,0	Element	Н	
Boris pusher, PML/Absorbing in x, Periodic/Periodic in y, Load Balancing		Incidence Angle	0°	Photon Parameters Density (n _c) [e;i]		Density (n _c) [e;i]	[10;10]	
		Shape in Time	Gaussian	Photon Sample	3	Particle per Cell [e;i]	[100;100]	
		Shape in Space	Gaussian	Photon Threshold	2	Thickness (µm)	0,05	

Monaco L. F. C., Numerical Study of Positron Production in Laser-Plasma Interaction with Double-Layer Targets via Non-linear Breit-Wheeler Process, MSc. Thesis (in-progress)

POLITECNICO MILANO 1863 Kevin Ambrogioni SMILEI Workshop – 8th November 2023

Kevin Ambrogioni

POLITECNICO MILANO 1863

Monaco L. F. C., Numerical Study of Positron Production in Laser-Plasma Interaction with Double-Layer Targets via Non-linear Breit-Wheeler Process, MSc. Thesis (in-progress)

SMILEI Workshop – 8th November 2023

Kevin Ambrogioni

POLITECNICO MILANO 1863

- Increase in conversion efficiency into pairs with decreasing foam density
- Optimal thickness of the foam depending on absorbed/reflected laser components

Maximum photon quantum parameter following a behaviour similar to the one of conversion efficiency

Monaco L. F. C., Numerical Study of Positron Production in Laser-Plasma Interaction with Double-Layer Targets via Non-linear Breit-Wheeler Process, MSc. Thesis (in-progress)

SMILEI Workshop – 8th November 2023

Conclusions and Perspectives

Numerical investigation of laser-plasma interaction is **fundamental** to capture the physics of the acceleration process. Integrated **PIC-Monte Carlo Codes** such as **Smile:**) are necessary to study **physical effects** relevant to radiation sources.

- Specifically optimised DLTs can be used to generate different radiation fields
- Compact sources (up to table-top) can be used by employing the appropriate configuration
- DLTs allow production of pairs during laser-plasma interaction with ultra-high-intensity lasers
 - Smile:) was shown versatile in allowing modelling for highly different radiation sources

Perspectives

- Study of possible design of **compact sources** for applications in **cultural heritage**
 - Solution to the problem on the statistics of Breit-Wheeler mechanism
- Studies on pair production with **Bethe-Heitler mechanism** at lower laser intensity

POLITECNICO MILANO 1863 | Kevin Ambrogioni | SMILEI Workshop – 8th November 2023

Smilei)

4th Smilei user & training workshop 8-10 November 2023, ELI Beamlines

Thanks for your attention!

kevin.ambrogioni@polimi.it
<a>www.ensure.polimi.it

POLITECNICO MILANO 1863

CINECA

Experimental Data of Laser-Driven Proton Acceleration with DLTs

M. Passoni et al., Toward high-energy laser-driven ion beams: Nanostructured double-layer targets, Physical Review Acc. and Beams, 19, 061301 (2016)

I. **Prencipe** et al., Efficient laser-driven proton and Bremsstrahlung generation from cluster-assembled foam targets, New Journal of Physics, 23, 093015 (2021)

POLITECNICO MILANO 1863 | Kevin Ambrogioni | SMILEI Workshop – 8th November 2023 | 30