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Radionuclides are of paramount importance in nuclear medicine both for clinical
uses and radiopharmaceutical production. Among the others, nuclides suitable for
theranostics like Copper-64 are particularly attractive since they can play both a
diagnostic and therapeutic role. In the last years, the growing demand for these
nuclides stimulated the research of new solutions, alongwith cyclotrons already in
use, for their production. In this respect, a promising alternative is laser-driven
proton accelerators based on the interaction of superintense laser pulses with
target materials. Because of their potential compactness and flexibility, they are
under investigation for several applications ranging from materials science to
nuclear medicine. Moreover, the use of advanced Double-Layer targets (DLTs)
was identified as a viable route to increase the number and energy of the
accelerated protons to satisfy the requirements of demanding applications. In
this contribution, we numerically investigate the use of DLT-based laser-driven
sources for Copper-64 production. We show that activities relevant to pre-clinical
studies can be achieved with an existing 150 TW laser and DLTs. Moreover, we
extend the discussion by considering a broad range of laser systems by exploiting a
theoretical model. Our results can guide the choice of laser and target parameters
for future experimental investigations.
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1 Introduction

Radioisotopes play a crucial role in nuclear medicine for both diagnostic and therapeutic
purposes. In 2023, over 40 million nuclear medicine procedures are performed each year,
and demand for radioisotopes is increasing at up to 5% annually [1]. In this framework,
access to radioisotopes suitable for advanced applications, such as radiotheranostics, is
crucial. Radiotheranostics is a novel approach that combines diagnostic and therapeutic
applications using the same radionuclide. Firstly, a patient is diagnosed using a
radiopharmaceutical that targets a specific tissue, allowing to determine the extent and
severity of the disease, as well as to identify which treatment the patient is likely to respond.
Then, once the diagnosis is made, a therapeutic dose of the same or similar radioisotope can
be administered to the patient, selectively killing the target cells with reduced radiation
damage to the healthy tissue. The diagnostic action typically relies on gamma or positron
emission, while the therapeutic effect exploits α or β decay. Among the possible candidate
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nuclides for radiotheranostics, Copper-64 (64Cu) is considered
especially promising thanks to the branching ratio of its decay
channels (17.9% probability of β+ decay to 64Ni, 39.0%
probability of β− decay to 64Zn), its relatively long half-life of
12.7 h, and the favourable chemistry of copper, which allows for
easy labelling with a wide range of biological molecules, such as
peptides, antibodies, and proteins [1].

Currently, radioisotepes for nuclear medicine are typically
produced using nuclear reactors and conventional accelerators,
mostly cyclotrons. Commercial cyclotrons used for radioisotope
production are optimized to work with a specific kind of particle
(usually protons) and a fixed operating energy (which lies in the
range 3–30 MeV) with a typical beam current in the range of 10 μA
up to 1 mA, depending on the size of the cyclotron itself [2]. While
these accelerators are tailored for their specific purpose and can
deliver very high radioisotope activity, their flexibility in terms of the
energy and nature of the accelerated particles is narrow. Moreover,
their limited availability hinders the widespread accessibility to
radioisotopes of interest for emerging applications in
radiobiology, medical and clinical research, such as 64Cu
radiotheranostics.

Laser-driven ion acceleration is attracting growing interest as a
promising solution to circumvent some limitations of conventional
accelerators, such as non-tunable energy, high costs, non-portable
size, and radioprotection issues. The working principle of laser-
driven acceleration is based on the interaction of an ultra-intense
ultra-short laser pulse (I > 1018 W/cm2, τ < 10 ps) with a target,
which rapidly ionizes upon irradiation turning into a plasma. The
rapid absorption of laser energy by the plasma induces a strong
charge separation and, consequently, intense longitudinal electric
fields which are responsible for the acceleration process [3].

One of the most reliable, robust, and well-understood laser-
driven ion acceleration schemes is Target Normal Sheath
Acceleration (TNSA). In TNSA, a laser pulse is focused on a
micrometric solid target, causing a portion of its energy to be
absorbed by the target electron population, which is heated to
relativistic energies and expands towards the back of the target,
generating a very intense (up to few MV/μm) longitudinal sheath
electric field. This sheath field is ultimately responsible for the
acceleration of light ions, mostly protons, located on the rear
surface of the target. As a result, bunches of light ions (108 up to
1012 protons per shot) with an exponential-like energy distribution
and a well-defined cut-off energy (ranging from a few MeV up to
several tens of MeV) are emitted towards the direction
perpendicular to the target surface.

Thanks to their features, laser-driven ion sources are already of
potential practical interest for some applications in the field of ion
beam analysis for material characterization [4–7], for which
requirements in terms of particle energy and current are not
particularly strict. On the other hand, to make laser-driven
acceleration attractive for the most challenging applications,
including radioisotope production, an enhanced acceleration
performance in terms of energy and current of the ion beam is
required [8–11].

To address this challenge, different strategies have been
considered so far. The first path relies on the continuing
advancement in laser technology, especially for what concerns
multi-petawatt laser systems with high pulse energy, ranging

from tens to hundreds of joule. This approach, however, depends
on the availability of a small number of top-class laser facilities,
posing an inherent limitation to the widespread diffusion of laser-
driven ion sources. The second approach focuses on table-top lasers
with peak power of tens to hundreds of terawatts (with laser pulse
energies ranging from tens of millijoule to a few joule) and high
repetition rates (ranging from Hz to kHz) to provide a practical,
compact, and cost-effective alternative to conventional accelerators.
In order to meet the requirements about ions energy and number set
by the applications even with limited laser pulse energy, the laser-
plasma coupling should be enhanced by tailoring the properties of
the target. Among the various possibilities, Double-Layer Targets
(DLTs) have emerged as one of the most reliable approaches to
enhance TNSA performance. DLTs are made of a micrometric solid
foil covered with a low-density layer (e.g., near-critical carbon
nanofoams [12, 13]), whose electron density is close to the
critical density for optical wavelengths. The enhanced laser pulse
coupling with the near-critical layer leads to a high conversion
efficiency of laser-to-energy into the hot electrons responsible for the
TNSA process [14]. In previous works we have experimentally
demonstrated the DLT capability of enhancing the acceleration
process both in terms of ion current and energy [15–17], and we
have proposed the utilization of DLTs as the key factor to fully
develop the potential of laser-driven sources for many applications,
including Particle Induced X-ray Analysis [5, 18], Photon Activation
Analysis [19], and Fast Neutron Resonance Reaction [20].

The production of radioisotopes is a challenging application
requiring high proton currents and energies. The use of laser-driven
sources for this scope demands considering these important aspects
[8, 21]. In this respect, the availability of numerical and theoretical
tools that estimate the yields and activities as a function of the laser
and target parameters is crucial. They can allow guiding the choice
of the parameters, planning future activities and experiments, as well
as identifying critical experimental issues to be addressed. For
instance, the development of proper target delivery systems that
are able to position targets at high repetition rates and compatible
with DLTs could be fundamental.

In this work we present numerical and theoretical approaches to
explore the potential of DLTs for the laser-driven production of
radioisotopes. In particular, we focus on 64Cu, a radionuclide with
promising applications in novel techniques like radiotheranostics, as
mentioned above. Emphasis is put on the process of proton
acceleration and proton-induced 64Cu generation, while issues
concerning the radiopharmaceutical preparation and delivery are
outside the scope of this work. We make use of 3D Particle-In-Cell
(PIC) simulations to model the proton acceleration from a single-
layer target and a DLT. We consider a realistic laser parameter and
the simulation results are compared with experimental data. Then,
we couple the output of the PIC simulations with Monte Carlo
simulations to obtain the yield of 64Cu and the associated activity.
Finally, we provide an estimate of the activity achievable with multi-
joule lasers and DLTs by exploiting a theoretical model. Our results
show that a 100 TW class laser equipped with DLTs can provide
sufficient activity (i.e., 10 s MBq) for pre-clinical studies. Moreover,
we suggest that PW-class lasers in combination with advanced
targets could reach the performance conventional accelerators for
the production of 64Cu activities relevant for clinical purposes
(i.e., 100 s MBq).
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2 Results and discussion

2.1 Particle-in-cell simulations and
comparison with experimental data

As discussed in Section 1, we performed two 3D PIC simulations
with the PICCANTE code [22] to obtain reliable proton energy
spectra from both a single-layer target and a DLT. In these
simulations, we consider realistic laser parameters achievable
with a 150 TW class laser. They are the same exploited in a
recently published experimental work by [17]. The p-polarized
pulse has a Gaussian envelope, 800 nm wavelength λ, a time
duration of 30 fs, 2.8 μm FWHM focal spot and normalized laser
intensity a0 = 16. The simulation box is x = 90λ along the laser
propagation direction and the lateral dimensions are 60λ in the y
and z directions. The spacial resolution is equal to 20 points per λ
and the simulation duration is 100λ/c = 267 fs. We impose periodic
boundary conditions in all directions.

The front surface of the targets is placed at x = 40λ. The bare
target has a thickness of 1.875λ = 1.5 μm and 40nc density
(nc � meω2

0ϵ0/e2 is the critical density, me the electron mass, ω0

the laser frequency, ϵ0 the vacuum permittivity and e the electron
charge). The density is sampled with 40 macro-electrons and
4 macro-ions with Z/A = 0.5 per cell. On the rear side of the
target, there is a fully ionized hydrocarbon contaminant layer of
thickness 0.1λ. Its density of 10nc is partitioned in 5nc for species
with Z/A = 0.5 and 5nc for species with Z/A = 1. The same number of

macro-electrons, macro-ions with Z/A = 0.5 and Z/A = 1 per cell is
set equal to 125.

For the simulation with the DLT, while keeping for the substrate
the same parameters set for the single-layer target, we included a
realistic three-dimensional nanostructured layer in front of the solid
foil. It was obtained through the application of a Diffusion Limited
Cluster-Cluster Aggregation (DLCCA) model [23]. The thickness of
this layer is equal to 5λ = 4.0 μm and the resulting density is 3nc,
partitioned in 2.85nc for a species with Z/A = 0.5 and 0.15nc for a
species with Z/A = 1. To simulate the carbon foam, we set 40 macro-
electrons, 4 macro-ions with Z/A = 0.5 and 2 macro-ions with Z/A =
1 per cell. A snapshot of the simulation showing the interaction of
the laser with the nanostructured DLT is reported in Figure 1A.

As shown in Figure 1B, with single-layer targets about 17% of the
laser energy is absorbed by hot electrons at maximum (i.e., 25λ/c
after the start of the simulation). Similarly, electrons from the DLT
substrate absorb about 20% of the laser energy. On the other hand,
the nanostructured layer absorbs 40% of the laser energy at 28λ/c.
Overall, the presence of the low-density layer allows increasing by a
factor of ~ 3 the conversion efficiency of laser energy into hot
electrons. Note that, after ~ 50λ/c the absorption reaches a
plateau for both the single-layer target and DLT.

The proton spectra are retrieved at 70λ/c, and they are reported
in Figure 1C with continuous lines. According to the PIC
simulations, we can achieve an energy enhancement of about
2 in the presence of the nanostructure, being 11.6 MeV and
23.5 MeV the maximum energies achieved with the single-layer

FIGURE 1
3D PIC simulation results. (A) A snapshot of the laser interaction with the DLT. (B) Fraction of laser energy absorbed by the target normalized to 1 as a
function of time. (C) Proton energy spectra obtained from the PIC (lines) and RCF experimental results (dots) from [17].
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target and DLT, respectively. Moreover, considering protons having
energies exceeding 2 MeV, their number is increased by a factor of
2.2 exploiting the DLT.

The proton energy spectra from PIC simulations are compared
in Figure 1C with those reported in [17] and obtained with RCF
stacks. The PIC results predict exactly the temperatures of the
proton spectra for both kinds of targets. The experimental
maximum energy of the accelerated protons with the single-layer
target is equal to 10.6 MeV, thus resulting in a relative error of
~ 8.6%. In the DLT case, the maximum proton energy is slightly
overestimated by PIC. Indeed, the experimental maximum energy of
18.8 MeV differs from the predicted value of ~ 20%. Overall, we can
conclude that there is a quite fair agreement between our results and
experimental data, proving the reliability of the 3D PIC simulations.

2.2 Monte Carlo simulations of 64Cu
radioisotope production

In order to quantify the number of 64Cu isotopes that can be
produced with monoenergetic and laser-driven proton sources, we
performed Monte Carlo Geant4 [24] simulations. The goal is to
compare the number of generated isotopes per unit incident protons
(i.e., the yield) with laser-driven proton sources and conventional
accelerators. For all irradiation conditions, we consider a pure Ni-64
sample of 5 cm thickness. We neglect the presence of other isotopes
since enrichment levels higher than 95% can be achieved in samples
for radioisotope production [25, 26]. It is placed 5 cm far from the
source.

We performed two simulations with laser-driven protons
providing the input proton spectra for single-layer target and
DLT obtained from the PIC. Thus, the primary proton energies
are sampled from the distributions reported in Figure 1C. The
minimum energy is set to 2 MeV since, according to the 64Ni(p,
n)64Cu reaction cross section reported in Figure 2A, no radioisotopes
are produced below this threshold. Moreover, we carried out nine
Monte Carlo simulations with monoenergetic protons having

energies between 4 and 20 MeV. The energies provided by
cyclotron machines for radioisotope productions usually lie in
this range [1]. In the simulations involving laser-driven protons,
we neglect the angular divergence of the beam since the irradiated
material is large enough so that all particles reach the surface.

As far as the hadronic processes are concerned, we implemented
the G4HadronElasticPhysicsHP and G4HadronPhysicsQGSP_BIC_
AllHP physics lists to model elastic and inelastic interactions,
respectively. In particular, the second one allowed us to exploit
the TENDL-2019 cross section [27] for 64Cu radioisotope
production (i.e., the continuous filled line in Figure 2A). For each
simulation, a total number of 4 × 107 primary particles were
simulated.

The number of produced 64Cu isotopes per unit incident proton
is reported in Figure 2. As expected, the yield achieved with
monoenergetic protons monotonically increases with the primary
particle energy. Around 20 MeV, it reaches a plateau since the
proton energy is beyond the region where the cross section lies.
Considering the laser-driven source with the single-layer target, the
yield is Y = 3.3 × 10−5, thus comparable with that achievable with
4.5 MeV monoenergetic protons. Exploiting the DLT, the yield
increases up to Y = 1.3 × 10−4, which is equivalent to the case of
a 6.4 MeV monoenergetic proton source.

2.3 Evaluation of the activity for pre-clinical
studies

Exploiting the results obtained from Monte Carlo simulations,
we can evaluate the activity achievable during irradiation with the
laser-driven proton source. To this aim, we assume the same
repetition rate of RR = 10 Hz that can be achieved with the laser
system [28] considered for PIC simulations. For the single-layer
target case, we assume Np = 2.6 × 1010 accelerated protons per shot
with energies higher than 2 MeV. This value has been obtained from
the experimental scaling reported in [20]. The scaling is valid for
10–100 fs laser pulses and simple foils as targets. Then, we apply the

FIGURE 2
Monte Carlo simulation results. (A) 64Ni(p, n)64Cu reaction cross section according to different databases (B) Comparison between the 64Cu yields
achieved with the single-layer target and DLT laser-driven sources and monoenergetic protons.
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gain factor of 2.2 for the proton number achievable with DLT.
Therefore, the number of incident protons per shot with the near-
critical nanostructured target is assumed to be 5.74 × 1010.

In order to retrieve the activity A during irradiation, we apply
the following simple equation:

A � RR ·Np · Y · 1 − e−λt( ) (1)

where λ = ln(2)/T1/2 is the decay constant and T1/2 = 12.7 h is the half
life of 64Cu. The results are reported in Figure 3.

First of all, we can notice that the activation rate and the
saturation activity are one order of magnitude higher with the
DLT compared to the single layer target, achieving approximately
4 MBq/h against 0.5 MBq/h and 73 MBq against 9 MBq,
respectively. Overall, the highest activity we can achieve with the
considered laser parameters would not allow performing clinical
studies on human patients. Indeed, the values usually needed for
treatments are of the order of 100 s MBq or higher [1, 29, 30]. They
are achieved by exploiting cyclotrons providing 5–20 MeV
monoenergetic protons and currents of the order of 10 s of μA.
To achieve comparable performances, a more intense laser source
and DLTs should be considered, as will be discussed in the next
Section.

On the other hand, the activity values usually considered for pre-
clinical studies exploiting mouse models lie in the range 5–100 MBq
[31–36]. In particular, the indicative threshold of 5 MBq is achieved
after 15.6 h of irradiation by exploiting single-layer targets. Vice
versa, the same activity can be obtained in 78 min of elapsed time by
adopting DLTs. These results show how near-critical
nanostructured targets could play a fundamental role to achieve
the activities required for pre-clinical studies by increasing the
performances of the laser-driven proton source. In principle, a
150 TW class laser equipped with DLTs could provide sufficient
64Cu isotopes for studies with mouse models. Notably, laser systems
with parameters coherent with those considered for this study have
become commercially available in recent years [37, 38]. On the other

hand, important effort must be put in the future to develop target
delivery systems compatible with DLTs and high repetition rate
operation. This point is currently subject of research [39].

2.4 Analytical estimation of the activity with
an analytical model

In the previous Sections, we have studied in detail the process
with a fixed set of laser and target parameters by making use of 3D
PIC simulations coupled with a Monte Carlo code. This approach is
aimed at modeling the laser-driven radioisotope generation with the
highest accuracy and demonstrating its potential in the view of
practical applications. On the other hand, it would also be very
interesting to extend the analysis to different laser and target
configurations. In this Section, we aim at finding a suitable
estimation of the total yield YT as a function of laser intensity a0
for optimized DLT conditions.

The total 64Cu production yield YT in a semi-infinite, isotopically
pure 64Zn converter can be expressed by:

YT � NCu

Np
� NAv

M
ρ∫∞

0
f Ep( )∫Ep

0

σ E( )
Sp E( ) dE dEp (2)

where Nn is the total number of radioisotopes produced upon
converter irradiation with Np protons, NAv is the Avogadro’s
number, M is the converter atomic mass, ρ is the converter
density, f(EP) is the proton spectrum normalized to the total
number of protons Np, Sp(E) is the proton linear stopping
power of the converter material and σ(E) is the total cross
section for the 64Zn(p, n)64Cu reaction, as a function of the
proton energy E.

In order to develop an explicit analytical expression for YT we
look for some suitable approximation of the integrals in Equation 2.
Firstly, let’s define the differential yield g(E) and the monoenergetic
yield h(Ep) as:

FIGURE 3
Activity as a function of the irradiation time obtained with the laser-driven source exploiting the DLT (red line) and single-layer target (blue line). The
coloured green area represents the 5–100 MBq range of activity usually exploited for pre-clinical studies with mice.
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g E( ) � Nat
σ E( )
S E( ) (3)

and

h Ep( ) � ∫Ep

0
g E( ) dE � ∫Ep

0
Nat

σ E( )
S E( ) dE (4)

in which Nat = ρ NAv/M in the atomic density of the converter. We
decided to approximate the g(E) with a Gaussian function Γ(E):

g E( ) → Γ E( ) � Ymax

w
��
π

√ exp − E − E0( )2
w2

( ) (5)

The values of the parameters Ymax (2.023 × 10−3), E0
(10.25 MeV) and w (4.38 MeV) are obtained with a least square
fitting of Γ(E) over the reference g(E). To this purpose, g(E)
(Equation 3) is calculated by assuming Nat ≈ 8.379 cm−3 as the
atomic density of a pure 64Ni target, S(E) according to the Bethe’s
formula for proton stopping power [40], and σ(E) from the TENDL
nuclear data library [27].

According to the literature concerning TNSA [3], the
normalized proton distribution is modeled as an exponential
function characterized by a slope Tp and with a cut-off
corresponding to the maximum proton energy ϵM:

f(Ep) �
exp(ϵM/Tp)

Tp(exp(ϵM/Tp) − 1) exp(−
Ep

Tp
) if Ep ≤ ϵM

f(Ep) � 0 if Ep > ϵM

⎧⎪⎪⎪⎨⎪⎪⎪⎩
The integral ∫ϵM

0
f(Ep)∫Ep

0
Γ(E)dE dEp can be solved

analytically, but the result can be simplified by assuming that
ϵM ≫ Tp, E0, which is verified for DLT targets and a0 > 15.
Under this assumption and taking only the leading term in Tp

one gets the following approximation for the total yield:

YT ≈ Ymax exp
w2 − 4E0Tp

T2
p

⎛⎝ ⎞⎠ (6)

Since Ymax, w and E0 are known, the last step is to express Tp as a
function of laser and target parameters. By considering the PIC
spectra shown in Figure 1C one can get Tp = 1.86 MeV for the bare
foil target and Tp = 3.24 MeV for the DLT. These values are close to
the electron temperature in both cases (1.84 MeV and 3.36 MeV
respectively), and therefore we assume that Tp ≃ Te, where Te can be
estimated through the theoretical model presented in [14]. Although
this approximation may seem rather crude it yields reasonable
results nonetheless, as detailed in the following.

The comparison between the approximated 64Cu yield achieved
with bare targets and DLTs as a function of the normalized laser
intensity is reported in Figure 4A. For a0 < 20, there is a remarkable
difference between the yields obtained with the two kinds of targets.
Indeed, the proton maximum energies are close to the energy range
5–15 MeV where the maximum of the cross section is located. Thus,
a strong enhancement of the proton energies with DLTs results in a
relevant increment of the yields in comparison with bare targets. On
the other hand, the curves of the yields start having the same slope
for a0 > 30, highlighting that the maximum proton energies have
largely exceeded 15 MeV for both kinds of targets.

We notice a fair agreement between the yields from the model
and those obtained from the Monte Carlo. They are practically
superimposed for the bare-target case. The yield resulting from the
Monte Carlo considering the DLT slightly underestimates the
analytical estimation. The discrepancy can be ascribed to the
approximations introduced in the model to treat the physical
processes, as well as to the different shapes of the proton
spectrum (resulting from the PIC in the Monte Carlo and purely
exponential in the model). In addition, there is a small difference

FIGURE 4
Results of the analytical model. (A) 64Cu Yield obtained from the model for the single-layer target (blue line) and DLT (red line) as a function of the
normalized laser intensity. The dots correspond to the yields obtained from the MC in Section 2.2. (B) Activity as a function of the irradiation time and
normalized laser intensity. White isolines correspond to fixed values of activity. (C) Activity per unit time as a function of the normalized laser intensity at
the start of the irradiation.
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between the target parameters exploited in the PIC simulations and
those obtained from the optimization with the model.

By exploiting the analytical yields, we can apply Equation 1 to
obtain the activity as a function of the elapsed (i.e., irradiation) time
for all values of a0 (corresponding to laser energies in the range
0.7–17.5 J). The results are reported in Figure 4B. Here, we keep
constant RR = 10 Hz for all values of normalized laser intensities.
While this high repetition rate has not yet been achieved for the
higher intensities considered here, we can reasonably assume that
laser technology will provide such systems in the future. Indeed,
state-of-the-art multi-100 s TW and PW class lasers can work at
~ 0.1 − 1 Hz repetition rate [37, 38, 41, 42]. For the number of
accelerated protons per shot Np, we have assumed the experimental
scaling already exploited in Section 2.3 and presented in [20] for bare
targets. Then, wemultiply all values ofNp by the enhancement factor
of 2.2 provided by the use of DLTs and obtained from the PIC
simulations.

The isolines in Figure 4B lie in correspondence with constant
values of activity. By way of comparison, we identified the 150 TW
(i.e., a0 ~ 16), DLT case study presented in the previous Sections as a
dotted red line. It intercepts the 5 MBq activity isoline at 72 min,
which is quite in agreement with the 78 min reported in Section 2.3.
We noticed that, considering intensity values between 20 and 50,
activities compatible with pre-clinical studies could be achieved in
minutes rather than hours. To obtain A ≫ 100 MBq relevant for
clinical studies, elapsed times of the order of 1 h or more should be
considered. The same result can be deduced also from the activity
per unit of elapsed time at the start of the irradiation. By looking at
the activity rate as a function of a0 (Figure 4C) one should conclude
that a0 > 30 will be sufficient to exceed 100 MBb/h.

3 Conclusion

Laser-driven proton acceleration is promising for several
applications, including the production of radioisotopes for
nuclear medicine. Although the requirements in terms of proton
energy and current are rather challenging, the constant progress in
laser technology and advanced target engineering suggests that
laser-driven proton sources could play a role in coping with the
expected rise of demand for radionuclides.

In this work, we have investigated the production of 64Cu with
laser-driven protons for theranostics purposes. Considering a state-
of-the-art 150 TW 10 Hz laser system, we numerically assessed the
increment in terms of activity achievable by exploiting an advanced
DLT rather than a single-layer target. Notably, the activity obtained
with DLTs upon irradiation lasting for tens of minutes is of the order
of 10 s MBq. In principle, this activity is sufficient for pre-clinical
studies with mouse model. In addition, we expanded the analysis to
more powerful systems using an approximated analytical model. We
showed that laser-driven sources could provide sufficient 64Cu

activity for clinical studies in the future. In this respect, advanced
DLTs can play a crucial role in efficiently producing radioisotopes
for nuclear medicine both in the case of commercial 100 s TW lasers
and multi-PW systems.
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