

CMD30 FisMat 2023 joint conference Milano – September 4-8, 2023

High Power Impulse Magnetron Sputtering of tungsten: a modelling and experimental investigation

D. Vavassori¹, D. Dellasega^{1,2}, F. Mirani¹, F. Gatti¹ and M. Passoni^{1,2}

¹Department of Energy, Politecnico di Milano, Via G. Ponzio 34/3, Milano, Italy ²Istituto per la Scienza e Tecnologia dei Plasmi (ISTP) - CNR, via R. Cozzi 53, Milano, Italy

davide.vavassori@polimi.it

High Power Impulse Magnetron Sputtering

- **Magnetron Sputtering**: Ejection of atoms from a target bombarded by energetic ions generated in a glow discharge. Electrons are trapped by a properly shaped magnetic field [1].
- Direct Current Magnetron Sputtering:
 - Constant discharge voltage.
 - Plasma density ~ $10^{15} 10^{17}$ m⁻³.
 - Low fraction of ionized sputtered species.
- High Power Impulse Magnetron Sputtering [2]:
 - Pulsed discharge voltage.
 - Plasma density ~ 10¹⁸ 10¹⁹ m⁻³.
 - High fraction of ionized sputtered species.
 - Complex plasma physics.

Development of a model to establish a connection between HiPIMS plasma characteristics and experimental results.

Ionization Region Model

 Time-dependent volume averaged plasma chemical model of the ionization region (IR) [3].

- Evolution of plasma species and plasma parameters inside the IR.
- Ordinary differential equations for:
 - Electron energy.
 - $\frac{dT_e}{dt} = \sum Q_{abs} \sum Q_{loss}$
- Tungsten Target
 - Particles density.

- Experimental input parameters (e.g., discharge current $I_D(t)$).
- $I_{D}(t)$ reproduced using two fitting parameters. The calculated current is:

$$calc = e \sum S_{RT} Z_i \Gamma_i^{RT} (1 + y_{eff,i})$$

Experimental Results: plasma influence on W films growth					
Deposition parameters: bias voltage	Microstructure and mechanical analysis	Residual stress analysis			
• Application of a substrate bias voltage.	XRD analysis	0.0	• The main XRD peak is the one related to the (110) reflection		

Conclusions & Foreseen Activities	 Use the model to assess the role of 	References
• The combined modelling and experimental approach allowed a satisfactory understanding of the connection between the characteristics of the HiPIMS Ar/W discharge and the	other relevant process parameters for the Ar/W HiPIMS discharge.	[1] J. T. Gudmundsson, Plasma Sources Sci. Technol. 29 (2020).
observed film properties [4].	• Apply the combined approach to other	[2] D. Lundin et al., "High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications", Elsevier (2020).
 An increase of the magnetic strength led to a different ion flux composition evolution both during the on-time of the voltage pulse and the afterglow. 	HIPIMS discharges (e.g., including N ₂ as working gas).	[3] C. Huo et al., J. Phys. D: Appl. Phys 50 (2017).
		[] [4] D. Vavassori et al., Surf. Coat. Tech. 458 (2023)

NanoLab