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( Context and motivation Yy

Innovative proton spectrometer for
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lon acceleration

e Duration: 10s fs
e Spot size: few pm
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s Short laser pulses with relativistic intensities

s Interaction with micrometric solid foils [1]:
Target Norma Sheat Acceleration (TNSA)

= Plasma generation: overdense regime n, > n,

= Plasma heating: Ponderomotive force

s Charge separation: strong electric field (MV/am)

s Acceleration of high energy e™ and ions (H, C)

s Main characteristics of laser-driven protons:
 Short bunches of particles (<ns)

* Broad energy spectra (exponential) T 4w i s . for particle acceleration from laser interaction | ® Precise characterization of the accelerated ions can
e Maximum energy up to 10s MeV Proton energy [MeV] with near-critical nanostructured plasmas"
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eESADNTe Measured proton Spectra a compact and ﬂEXible Sources fOr:

Materials science (e.qg., PIXE [4, 5])
 Radioisotopes production
~am12um  ® Physics experiments

comparing DLT and simple foils [3]
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= Enhanced TNSA [2, 3]: double layer targets (DLTs) to
 Peak power: 10s TW - PW eE, control and improve energy and number of particles

, Volumetric laser-plasma interaction +
* Intensity: 108 - 1022 W/cm? |y = Jl +ag/2 Relativistic self-focusing

Superintense
laser pulse

See the poster F. Mirani, "Target production
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detection

@ The characteristics of laser-driven sources
requires specific solutions for ion characterization

s Commonly adopted solutions are both active (TPS,
TOF) and passive (RCF, CR39) ones
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7 lectrons s The standard diagnostic is the Thomson Parabola
Spectrometer coupled to a MCP +CCD:

* Parallel electric and magnetic fields
e Parabolic trajectories according to g/m
e Position along the parabolas depend on energy

@B General detection chacteristics and limits:

e Offline/online data analysis
 Energy resolution and range

e Info on angular distribution
 Absolute calibration

* Discriminating different particles

give insights on laser and plasma properties
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o
s The concept of a proton spectrometer Vacuum chamber
for laser-driven sources is presented Stopper

a A pinhole selects a small solid angle roton
A magnet deflects the charged particles | ; cencor
A filter is used to select the protons Fin hole 5
Pixelated detectors detect radiation :

s Real-time spectral analysis with broad
energy range and absolute calibration

s The narrow entrance + the filter will help
against unwanted radiation, EMPs and
debris from laser-plasma interaction

= & Geant4 Monte Carlo simulations
allow to compure the response
matrix to relate measured signals to
the number of incident protons

Concept & designj ‘
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e | charge, mass and
i . energy
] *"' _— = Electrons are removed
e from the beam ;e
= Intensity and length of the magnet are related to the %
energy resolution of the spectrometer { % CrxdUm
s Precise knowledge of the magnetic field map is /8 ;
needed for the design of the device: Iiil’

e Gaussmeter measurements
e Test with charged particles (accelerator)

The dipole magnet
deflects particles
according to ther

thickness [um]

rr| @ Filter shaped according to C-ion range in

—— Layers

matter to stop them and letting proton pass
through with little energy loss

s Produced using magnetron sputtering
(DCMS, HIPIMS), a plasma-based film
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deposition technique
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See poster D.
of Tungsten: a modelling and experimental investigation"

@ Shields the detector from other radiation

(photons, EM, electrons) from laser-plasma int.
Vavassori, "High Power Impulse Magnetron Sputtering

Proton Energy [MeV]
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k Differential filter

( Pixelated detector J

s Each pixel is associated to | ..
an energy binrelatedto | . ™™
its physical dimension and
distance from the magnet

m |ntegrated data analysis
with ad-hoc electronics

dN/dE [1/MeV]
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Proton Energy [MeV]

@ The correspondance between proton energy and
charges generated in the pixels allow to retrieve
the total number of interacting particles

m Detectors are operated in current mode: the
total signals are integrated and then divided by
the calibration curve

s TJotal signals are the convolution of the

calibration curve and the exponential shape of the
proton energy spectrum

(Conclusions and perspectives

m The proposed spectrometer is a promising device
to characterize laser-driven protons in real time
with absolute calibration

= Magnetron sputtering proved to be a good
plasma technique to produce the layered ion filter

s Theoretical modelling and first experimental
characterization of magnet, differential filter and
sesors paved the way for use in laser-driven
experiments

Extensive Monte Carlo

simulations to be performed to

build the response matrix
The ad-hoc front-end

electronics have to be tested

The device will be tested at an
electrostatic accelerator (Oct-

Dec 23 @ LNL)

The spectrometer will be used in
PW-laser experiments @ CLPU
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