CMD30 FisMat 2023

joint conference Milano - September 4-8, 2023

Mini-colloquium: Italian Plasma Physics

Carbon nanofoam targets for inertial confinement fusion experiments

<u>A. Maffini</u>¹, M. Cipriani², D. Orecchia¹, M. S. Galli de Magistris¹, V. Ciardiello³, V. P. Lo Schiavo³, D. Davino³, G. Cristofari², M. Scisciò², F. Consoli², M. Passoni¹

ENR-IFE.01.CEA "Advancing shock ignition for direct-drive inertial fusion" Foam targets in laser-matter interaction

Why carbon nanofoams?

Features of PLD carbon nanofoams

Carbon nanofoams for ICF experiments

Foam targets in laser-matter interaction

Why carbon nanofoams?

Features of PLD carbon nanofoams

Carbon nanofoams for ICF experiments

Why foams for laser-plasma interaction?

Increased laser conversion into mechanical energy (shock waves)

Smoothing of laser non-homogeneity in ICF

Line-out region

Outer cone

Beams

plasma `bubble' — Capsule

Outer Cone

\

Inner Cone

Beams

Ta₂O₅

foam line

POLITECNICO

MILANO 1863

Warm dense matter (EOS, astrophysics,...)

Bright x-ray sources (e.g. in hohlraum internal walls)

Increased laser conversion into secondary radiation (electrons, ions, neutrons, x-rays, ...)

A.S. Moore, Phys. Review E 102, 051201(R) (2020)

M. Passoni et al., Plasma Phys. Control. Fusion 62 (2019)

Why foams for laser-plasma interaction?

Increased laser conversion into mechanical energy (shock waves)

Smoothing of laser non-homogeneity in ICF

Line-out region -

Outer cone

Beams

plasma `bubble' — Capsule Outer Cone

Warm dense matter (EOS, astrophysics,...)

Bright x-ray sources (e.g. in hohlraum internal walls)

Increased laser conversion into secondary radiation (electrons, ions, neutrons, x-rays, ...)

Invited talk by **M. Galbiati**, III session, Wednesday 6th Sept. Poster by **F. Mirani** and **F. Gatti**, V session, Thursday 7th Sept. Talk by **D. Orecchia**, GS_11, Friday 8th Sept.

M. Passoni et al., *Plasma Phys. Control. Fusion* **62** (2019)

A.S. Moore, Phys. Review E 102, 051201(R) (2020)

Inner Cone

POLITECNICO

MILANO 1863

Beams

Why foams for laser-plasma interaction?

Increased laser conversion into mechanical energy (shock waves)

- Smoothing of laser non-homogeneity in ICF
 - Warm dense matter (EOS, astrophysics,...)

Line-out region -

Outer cone

Beams

plasma `bubble' — Capsule Outer Cone

- Bright x-ray sources (e.g. in hohlraum internal walls)

Increased laser conversion into secondary radiation (electrons, ions, neutrons, x-rays, ...)

Invited talk by **M. Galbiati**, III session, Wednesday 6th Sept. Poster by **F. Mirani** and **F. Gatti**, V session, Thursday 7th Sept. Talk by **D. Orecchia**, GS_11, Friday 8th Sept.

M. Passoni et al., *Plasma Phys. Control. Fusion* **62** (2019)

A.S. Moore, Phys. Review E 102, 051201(R) (2020)

Inner Cone

POLITECNICO

MILANO 1863

Beams

Conventional foams for ICF experiments A review of low density porous materials used in laser plasma experiments [©] ©

Cite as: Phys. Plasmas **25**, 030501 (2018); https://doi.org/10.1063/1.5009689 Submitted: 19 October 2017 • Accepted: 20 February 2018 • Published Online: 16 March 2018

🔟 Keiji Nagai, 🔟 Christopher S. A. Musgrave and Wigen Nazarov

Foam class Pore size range ^a		Density range (mg/cm ³) ^b	Element composition	High/low Z (e1)	Target dimensions (μ m)	
Aerogels						
Organic aerogels (RF)	nm	10-250	СНО	Low Z	200-600	
Inorganic aerogels	nm	1-250	(Si, Ta, Ga, Al) O ₂	Middle-High Z	200-600	
Carbonized aerogels	nm	10-250	С	Low Z	200-600	
PolyHIPE	μm	30-250	СН	Low Z	200-600	
Acrylates and Methacrylates	μm	5-250	CHO	Low Z	10-600	
Templated foams	nm-µm	1-250	Metal oxides	High Z	10-600	
Electrospinning	nm	1-250	Metal oxides	High Z	10-600	
Poly(3-methyl-1-pentene)	nm- μ m	3–250	CH_2	Low Z	200-600	

TABLE I. Foam types used in laser targets and their properties.

POLITECNICO

MILANO 1863

Conventional foams for ICF experiments

Left; un-doped polyHIPE, Right; 2% W doped polyHIPE

Undoped 32 mg/cm³ polyHIPE

POLITECNICO

MILANO 1863

• Quasi-periodic networks Characterized by "pore size"

K. Nagai, et al., *Physics of Plasmas* **25**, 030501 (2018)

- C. Yang et., Appl. Phys. Lett. 115, 111901 (2019)
- Y. Kaneyasu et al., High Pow. Las. Sci. Eng. 9 (2021), e31

Why foam targets in laser-matter interaction?

Why carbon nanofoams?

Features of PLD carbon nanofoams

Carbon nanofoams for ICF experiments

Multi-scale structure

Thickness: 1 to 100s μm Area: from 1 mm² to 10 cm² Virtually any kind of substrate

A. Zani et al., *Carbon.* 56: (2013) 358–365
A. Maffini et al., *Physical Review Materials* 3 (2019) 083404
A. Maffini et al., *Applied Surface Science* 599 (2022) 153859

Multi-scale structure

Thickness: 1 to 100s μm Area: from 1 mm^2 to 10 cm^2 Virtually any kind of substrate

Fractal-like aggregates Gyration radius (R_g) ~ 0.1 – 5 µm Fractal dimension (D) ~ 1.8 – 2.2

A. Zani et al., *Carbon.* 56: (2013) 358–365
A. Maffini et al., *Physical Review Materials* 3 (2019) 083404
A. Maffini et al., *Applied Surface Science* 599 (2022) 153859

Multi-scale structure

Thickness: 1 to 100s μ m Area: from 1 mm² to 10 cm² Virtually any kind of substrate Fractal-like aggregates Gyration radius (R_g) $\sim 0.1 - 5 \ \mu m$ Fractal dimension (D) $\sim 1.8 - 2.2$

Nanoparticle constituents: NP radius (R_{np}) ~ 5 – 20 nm NP density (ρ_{np}) ~ 50% – 100% of bulk

A. Zani et al., *Carbon.* 56: (2013) 358–365
A. Maffini et al., *Physical Review Materials* 3 (2019) 083404
A. Maffini et al., *Applied Surface Science* 599 (2022) 153859

Why foam targets in laser-matter interaction?

Why carbon nanofoams?

Features of PLD carbon nanofoams

Carbon nanofoams for ICF experiments

Pulsed Laser Deposition

A. Maffini et al., in Nanoporous Carbons for Soft and Flexible Energy Devices, Springer, 2022

Foam properties control

Pulsed Laser Deposition

Foam properties control

Foam properties control

Example: the role of deposition pressure

A. Maffini et al., Applied Surface Science 599 (2022) 153859

Talk by **D. Orecchia**, GS_11, Friday 8th Sept.

Nanofoam analysis at nano- and micro-scale

A. Maffini et al., Applied Surface Science 599 (2022) 153859

Talk by **D. Orecchia**, GS_11, Friday 8th Sept.

Fine tuning of nanofoam density and morphology

POLITECNICO

MILANO 1863

PLD

Pressure (Ar)

PLD nanofoams of many elements...

Boron

Gold

Talk by **D. Orecchia**, GS_11, Friday 8th Sept.

Why foam targets in laser-matter interaction?

Why carbon nanofoams?

Features of PLD carbon nanofoams

Carbon nanofoams for ICF experiments

1D MULTI-FM to study laser-foam interaction

MULTI-FM: 1D hydrodynamic code to study laser-foam interaction

Laser-plasma dynamics in an "effective medium" with fills and gaps.

 $b_0^{}, \rho_s^{}$ Laser ρ

M. Cipriani et al., Laser and Particle Beams, **36** (2018) 121-128

1D MULTI-FM to study laser-foam interaction

MULTI-FM: 1D hydrodynamic code to study laser-foam interaction

 $\rho_p = \rho_s \left(\frac{b_0}{\delta_0}\right)^{\frac{1}{\alpha}}$

Laser-plasma dynamics in an "effective medium" with fills and gaps. Main modeling parameter: degree of plasma homogenization

- Initial pore size= δ_0
- Initial solid element size=b₀
- Density of solid parts = ρ_s
- Foam fractal parameter = α
- Average plasma density $\rho_{_{D}}$ given by fractal scaling
- Homogenization time = $\int_{H} (b_0, \delta_0, \rho_p, Temperature)$

Validated for conventional (micrometric, plastic) foams....

M. Cipriani et al., Laser and Particle Beams, **36** (2018) 121-128

1D MULTI-FM to study laser-foam interaction

MULTI-FM: 1D hydrodynamic code to study laser-foam interaction

 $\rho_p = \rho_s \left(\frac{b_0}{\delta_0}\right)^{\frac{1}{\alpha}}$

Laser-plasma dynamics in an "effective medium" with fills and gaps. Main modeling parameter: degree of plasma homogenization

- Initial pore size= δ_0
- Initial solid element size=b₀
- Density of solid parts = ρ_s
- Foam fractal parameter = α
- Average plasma density $\rho_{_{D}}$ given by fractal scaling
- Homogenization time = $\int_{H} (b_0, \delta_0, \rho_p, Temperature)$

Validated for conventional (micrometric, plastic) foams....

...application to carbon and nanofoams is a novelty!

M. Cipriani et al., Laser and Particle Beams, 36 (2018) 121-128

A. Maffini et al., Laser and Particle Beams, 2023, Article ID: 1214430

POLITECNICO **MILANO 1863**

MILANO 1863

MILANO 1863

Laser parameters:

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2

Same as **ABC** laser @ ENEA Frascati

Full ionization, $Z_{eff} = 6 \rightarrow n_c \sim 3.3 \text{ mg/cm}^3$

A. Maffini et al., Laser and Particle Beams, 2023, Article ID: 1214430

Laser parameters:

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2

Same as **ABC** laser @ ENEA Frascati

Full ionization, $Z_{eff} = 6 \rightarrow n_c \sim 3.3 \text{ mg/cm}^3$ $\rho_p = 6 \text{ mg/cm}^3$, different nanostructure

A. Maffini et al., Laser and Particle Beams, 2023, Article ID: 1214430

Laser parameters:

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2

Same as **ABC** laser @ ENEA Frascati

0.0 ns

0.3 ns

0.9 ns

.

Full ionization, $Z_{eff} = 6 \rightarrow n_c \sim 3.3 \text{ mg/cm}^3$ $\rho_n = 6 \text{ mg/cm}^3$, different nanostructure

A. Maffini et al., Laser and Particle Beams, 2023, Article ID: 1214430

POLITECNICO MILANO 1863

1.4 ns

····· 2.0 ns

2.6 ns

POLITECNICO MILANO 1863

Laser parameters:

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2 Same as **ABC** laser @ ENEA Frascati

Full ionization,
$$Z_{eff} = 6 \rightarrow n_c \sim 3.3 \text{ mg/cm}^3$$

 $\rho_n = 18 \text{ mg/cm}^3$, different nanostructure

A. Maffini et al., Laser and Particle Beams, 2023, Article ID: 1214430

POLITECNICO MILANO 1863

ŀ	 $0.0 \ \mathrm{ns}$	 $1.1 \mathrm{~ns}$	 2.2 ns		$3.4 \mathrm{ns}$	 $4.5 \ \mathrm{ns}$
•	 $0.6 \ \mathrm{ns}$	 1.6 ns	 2.8 ns	•••••	$3.9 \mathrm{~ns}$	 $5.0 \ \mathrm{ns}$

Same as **ABC** laser

0.0 ns

0.6 ns

1.1 ns

1.6 ns

@ ENEA Frascati

Laser parameters:

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2

Full ionization, $Z_{eff} = 6 \rightarrow n_c \sim 3.3 \text{ mg/cm}^3$

Main results:

- Pressure enhancement with nanostructure
- Higher ρ_{D} gives higher pressure
- At constant $\rho_{_{D}}$, larger pores yield higher pressure
- Thickness > $100 \ \mu m$ is required
- Substrate effect not included
- Experimental validation is required

30δ₀= 5 μm [Mbar] $b_0 = 45 \text{ nm}$ $\rho_{\rm p} = 18 \text{ mg/cm}^3$ 20Pressure 100.010.000.020.03 $\delta_0 = 10 \ \mu m$ $b_0 = 90 \text{ nm}$ Pressure [Mbar] 40 $\rho_{\rm p} = 18 \text{ mg/cm}^3$ 200.010.000.020.03 $x \, [\mathrm{cm}]$

2.2 ns

2.8 ns

3.4 ns

3.9 ns

4.5 ns

5.0 ns

A. Maffini et al., Laser and Particle Beams, 2023, Article ID: 1214430

POLITECNICO MILANO 1863

Laser parameters

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2 Ep = 40 J

Laser parameters

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2 Ep = 40 J

Target parameters

Substrates: 1.5 μm Al, bulk Al Foam density: 6 mg/cm³ , 26 mg/cm³ Foam thickness: 30 μm to 270 μm

Laser parameters

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2 Ep = 40 J

Target parameters

Substrates: 1.5 μm Al, bulk Al Foam density: 6 mg/cm³ , 26 mg/cm³ Foam thickness: 30 μm to 270 μm

Diagnostic setup

POLITECNICO

MILANO 1863

Optical emission & streak camera Interferometry & shadowgraphy Particle & x-ray emission Post-mortem crater analysis

Laser parameters

Wavelength = 1054 nmTemporal FWHM = 3 nsIntensity = 10^{14} W/cm^2 Ep = 40 J

Target parameters

Substrates: 1.5 μm Al, bulk Al Foam density: 6 mg/cm³ , 26 mg/cm³ Foam thickness: 30 μm to 270 μm

Diagnostic setup

Optical emission & streak camera Interferometry & shadowgraphy Particle & x-ray emission **Post-mortem crater analysis**

POLITECNICO MILANO 1863

Analysis of laser-made craters

Bulk Al, **no foam**

Bulk Al + foam 6 mg/cm³

Bulk Al + foam 26 mg/cm³

Analysis of laser-made craters

Bulk Al, **no foam**

Bulk Al + foam 6 mg/cm³

Bulk Al + foam 26 mg/cm³

Volume ~ $3.5^* \ 10^7 \ \mu m^3$

Volume ~ $4* 10^7 \mu m^3$

Volume ~ 6* $10^7 \ \mu m^3$

POLITECNICO

Conclusions and perspectives

PLD as a versatile alternative to conventional techniques

Conclusions and perspectives

PLD as a versatile alternative to conventional techniques

Can we trust 1D hydro simulation? Will the nanostructure survive long enough in ns regime? (and so on...)

Conclusions and perspectives

PLD as a versatile alternative to conventional techniques

PLD nanofoams have **potential** application also in ICF

Can we trust 1D hydro simulation? Will the nanostructure survive long enough in ns regime? (and so on...)

Analysis of experimental data is ongoing

Thank you for your attention!

