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Why foams for laser-plasma interaction?

Warm dense matter (EOS, astrophysics,...)

Increased laser conversion into mechanical energy (shock waves)

Smoothing of laser non-homogeneity in ICF

Bright x-ray sources (e.g. in hohlraum internal walls)

Increased laser conversion into secondary radiation
(electrons, ions, neutrons, x-rays, ...)

M. A. Belyaev, et al., Phys. Plasmas 27, 112710 (2020)

A.S. Moore, Phys. Review E 102, 051201(R) (2020) M. Passoni et al., Plasma Phys. Control. Fusion 62 (2019)
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Conventional foams for ICF experiments

K. Nagai, et al., Physics of Plasmas 25, 030501 (2018)
C. Yang et., Appl. Phys. Lett. 115, 111901 (2019)
Y. Kaneyasu et al., High Pow. Las. Sci. Eng. 9 (2021), e31

Polystyrene

Graphene aerogel Resorcinol/F

➔ Quasi-periodic networks
➔ Characterized by “pore size”

Doped Polymers SnO
2
 mats
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Carbon nanofoams are different

Nanoparticle constituents:

A. Zani et al., Carbon. 56: (2013) 358–365
A. Maffini et al., Physical Review Materials 3 (2019) 083404
A. Maffini et al., Applied Surface Science 599 (2022) 153859

Multi-scale structure
Thickness: 1 to 100s μm
Area: from 1 mm2 to 10 cm2

Virtually any kind of substrate 

Fractal-like aggregates
Gyration radius (R

g
) ~ 0.1 – 5 μm

Fractal dimension (D) ~ 1.8 – 2.2
NP radius (R

np
) ~ 5 – 20 nm

NP density (ρ
np

) ~ 50% – 100% of bulk 
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Pulsed Laser Deposition

Substrate

Plasma plume

target-to-substrate 
distance

Laser 
Beam

Background Gas
• Inert (He, Ar..)
• Reactive (O2)

(almost any kind of substrate)

Target

Conventional ns-PLD:
 ~ 5 ns pulse duration
 ~ 1 J pulse energy

Alternative fs-PLD:
 ~ 100 fs pulse duration
 ~ 5 mJ pulse energy

A. Maffini et al., in Nanoporous Carbons for Soft and Flexible Energy Devices, Springer, 2022



Nano-scale Micro-scale Macro-scale
- Crystalline structure & 

composition
- Nanoparticle size

- Aggregate size
- Morphology

- Uniformity
- Thickness profile

Pulse Duration Laser Fluence Gas pressure Geometry Deposition time

Foam properties control

PLD process parameters
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Conventional ns-PLD:
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 ~ 1 J pulse energy
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Unparalleled versatility
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Complex, non-linear process
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Pulse Duration Laser Fluence Geometry Deposition time

Foam properties control

PLD process parameters

Nano-scale Micro-scale Macro-scale
- Crystalline structure & 

composition
- Nanoparticle size

- Aggregate size
- Morphology

- Uniformity
- Thickness profile

Gas pressure



Example: the role of deposition pressure

A. Maffini et al., Applied Surface Science 599 (2022) 153859 Talk by D. Orecchia, GS_11, Friday 8th Sept.



Nanofoam analysis at nano- and micro-scale

Fractal scaling for 
density esitimation

Aggregate radius Rg [μm]Nanoparticle size Rnp [nm] Fractal dimension D

A. Maffini et al., Applied Surface Science 599 (2022) 153859 Talk by D. Orecchia, GS_11, Friday 8th Sept.



Fine tuning of nanofoam density and morphology

Carbon nanofoam density
[experiments and model]

A. Pazzaglia et al., Material Characterization 153 (2019) 92-102
A. Maffini et al., Applied Surface Science 599 (2022) 153859



Functionally graded nanofoams

~150 mg/cm3 
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PLD nanofoams of many elements...

Boron Titanium Gold
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Talk by D. Orecchia, GS_11, Friday 8th Sept.
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1D MULTI-FM to study laser-foam interaction
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...application to carbon and nanofoams is a novelty!
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MULTI-FM simulation of nanofoam irradiation

Laser parameters:
Wavelength = 1054 nm
Temporal FWHM = 3 ns
Intensity = 1014 W/cm2

Full ionization, Z
eff
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 ~ 3.3 mg/cm3

Same as ABC laser
@ ENEA Frascati
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Main results:
● Pressure enhancement with nanostructure
● Higher ρ

p
 gives higher pressure

● At constant ρ
p
 , larger pores yield higher pressure

● Thickness > 100 μm is required
● Substrate effect not included
● Experimental validation is required
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Analysis of laser-made craters
Bulk Al, no foam Bulk Al + foam 6 mg/cm3 Bulk Al + foam 26 mg/cm3



Analysis of laser-made craters

Volume ~ 3.5* 107 μm3 Volume ~ 6* 107 μm3

Bulk Al, no foam Bulk Al + foam 6 mg/cm3 Bulk Al + foam 26 mg/cm3

Volume ~ 4* 107 μm3
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Conclusions and perspectives

Analysis of experimental data is ongoing 

PLD as a versatile alternative to conventional techniques

PLD nanofoams have potential application also in ICF

Can we trust 1D hydro simulation? Will the nanostructure 
survive long enough in ns regime? (and so on…)
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