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o Advancements in double-layer target production exploiting innovative
physical vapor deposition techniques
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Near-critical double-layer target (DLT) Standard DLT production

* Deposition of near-critical layer on commercially available solid foils.

. SOlid.fOil covered by a near-critical  Foam-based DLT successfully exploited in laser-driven
density layer. experiments [1,2,3].

laser incidence side

 Limitations: thickness uncertainty, limited thickness
and material available, deformation while handling and
attaching to the holder.

* Enhanced laser-plasma coupling
through the near-critical layer.

* Hotter relativistic electrons. l

Direct deposition of target on the holder by Physical

< um nem_\ * Moreions at higher energies.

thin fol Vapor Deposition (PVD) techniques!

single target overall assembly

critical layer

Experimental Methods: PVD techniques

Magnetron Sputtering (MS)

* Ejection of atoms from a target caused by energetic ions of an inert gas. Electrons are
trapped by a properly shaped magnetic field.

Pulsed Laser Deposition (PLD)

 Ablation of material from a solid target by laser pulses.

* Direct Current Magnetron Sputtering (DCMS): a constant voltage is applied to sputter.

ns-PLD fs-PLD
* High Power Impulse Magnetron Sputtering (HiPIMS) [4]: T * well established. * non-standard technique [5].
: : - TI * few ns pulses. <100 fs pulses.
= pulses with high peak power = low repetition frequency (50 — 5000 Hz) Titanium
= pulse length 50 -400 ps = |low dutycycle (<10 %) * 100s mJper pulse. * fewml per pulse.
P + Upto 10 Hz. + KkHz or higher.

* Nanostructured low-density
film of any element.

¢

/M density plasma, 1" ionization degree, > sputtered species energy.
* |Improvement of film properties.
* Deposition on complex substrates.
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Holder preparation

e Caramel
dissolution in water
(few minutes).

e Holder holes filled with a sacrificial material to be

d after the solid-density layer deposition.
. . . . . . remove

e Caramel: soluble in water, amorphous material,
planar uniform surface, compatible with PVD
subsequent depositions.

e Titanium

¥ 180°c freestanding films.
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Laser Plasma Technologies

Near-critical carbon foam deposition

fs —PLD carbon foam deposition [7]:

i. High Argon pressure (250 Pa)
ii. Void-rich fractal structure.
ii. Thickness=10s um.

iv. Density =6 mg/cm?.
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HIPIIVIS/DC_I\/IS FILM

* Good adhesion on freestanding

* Deposition of hybrid DCMS/HIPIMS titanium films [6]: N o 1 dameter titanium films with thickness
® 1.5 mm diameter
i. 4 hybrid layers (80% DCMS, 20% HiPIMS) Tz — rfernca ns equal or greater than 400 nm.
ii. Application of substrate bias voltage. < Lo . ¢
200 5 ok 8 os, . . . * Low material deposition on the
nm = 2 m thickness range. Eg.ﬁ. . 200 nm-thick freestanding films.
* Near-bulk film density (80% or greater). 8 °4]
e * Freestanding films vibrations
* Low residual stress state.
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during PLD deposition.
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