

POLITECNICO **MILANO 1863**

Target

Advancements in double-layer target production exploiting innovative physical vapor deposition techniques D. Vavassori¹, D. Orecchia¹, A. Maffini¹, F. Gatti¹, F. Mirani¹, D. Dellasega¹ and M. Passoni¹

¹Department of Energy, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano, Italy davide.vavassori@polimi.it

Near-critical double-layer target (DLT)

Fabrication

- Solid foil covered by a near-critical density layer.
- Enhanced laser-plasma coupling through the near-critical layer.
- Hotter relativistic electrons.
- More ions at higher energies.

Standard DLT production

- Deposition of near-critical layer on commercially available solid foils.
- Foam-based DLT successfully exploited in laser-driven experiments [1,2,3].
- Limitations: thickness uncertainty, limited thickness and material available, deformation while handling and attaching to the holder.

Direct deposition of target on the holder by Physical Vapor Deposition (PVD) techniques!

Experimental Methods: PVD techniques

Magnetron Sputtering (MS)

- Ejection of atoms from a target caused by energetic ions of an inert gas. Electrons are trapped by a properly shaped magnetic field.
- Direct Current Magnetron Sputtering (DCMS): a constant voltage is applied to sputter.
- High Power Impulse Magnetron Sputtering (HiPIMS) [4]:
- low repetition frequency (50 5000 Hz) pulses with high peak power
- pulse length 50 400 µs
- low duty cycle (< 10 %)
- \uparrow density plasma, \uparrow ionization degree, \uparrow sputtered species energy.
 - Improvement of film properties.
 - Deposition on complex substrates.

Copper 63.55

W

Tungster 183.8

Pulsed Laser Deposition (PLD)

• Ablation of material from a solid target by laser pulses.

- well established.
- few ns pulses.
- 100s mJ per pulse.
- Up to 10 Hz.

film of any element.

• non-standard technique [5].

• Nanostructured low-density

- <100 fs pulses.
- few mJ per pulse.
- kHz or higher.

Β

С

Au

Strategy for Freestanding DLT Production

- Deposition of hybrid DCMS/HiPIMS titanium films [6]:
 - 4 hybrid layers (80% DCMS, 20% HiPIMS)
 - Application of substrate bias voltage.

- 200 nm ÷ 2 µm thickness range.
- Near-bulk film density (80% or greater).
- Low residual stress state.

ERC-2014-CoG No. 647554

ENSURE

- Good adhesion on freestanding titanium films with thickness equal or greater than 400 nm.
- Low material deposition on the 200 nm-thick freestanding films.

ERC-2022-PoC No. 101069171

PANTANI

• Freestanding films vibrations during PLD deposition.

erc

Conclusions & Foreseen Activities		References	[4] D. Lundin et al., ''High Power Impulse Magnetron	
•	Effective production of near-critical DLT •	Exploration of different combinations of	[1] M. Passoni et al., Plasma Phys. Contr. Fus. 62 (2020) 014022	Sputtering'', Elsevier, Amsterdam, Netherlands, 2020
	directly on target holders.	materials for solid and near-critical layers.	[2] I. Prencipe et al., Plasma Phys. Contr. Fus. 58 (2016) 034019	[5] P. Balling et al., Rep. Prog. Phys. 76 (2013) 036502
•	Compatibility between layers grown by • HiPIMS/DCMS and fs-PLD.	Experimental test in particle acceleration campaigns.	[3] I. Prencipe et al.,New J. Phys 23 (2021) 093015	[7] A. Maffini et al., App. Surf. Scie. 599 (2022) 153859

erc

DIPARTIMENTO DI ENERGIA