36th European Conference on Laser Interaction with Matter

Pulsed Laser Deposition of nanofoam targets for laser-driven inertial fusion experiments

A. Maffini, D. Orecchia, A. Formenti, V. Ciardiello, M. Cipriani, F. Consoli, M. Passoni

Frascati, 21/9/2022

Why foam targets in laser-matter interaction?

Why Pulsed Laser Deposition of nanofoams?

Features of PLD nanofoams

PLD nanofoam in laser-matter interaction & ICF

Why foam targets in laser-matter interaction?

Why Pulsed Laser Deposition of nanofoams?

Features of PLD nanofoams

PLD nanofoam in laser-matter interaction & ICF

Why foams for laser-matter interaction?

Increased laser conversion into mechanical energy (shock waves)

Warm dense matter (EOS, astrophysics,...)

Line-out region -

Outer cone

Beams

plasma `bubble' — Capsule

Outer Cone

Smoothing of laser non-homogeneity

Increased laser conversion into particle energy

O-4 J. Limpouch O-7 S. Shekhanov O-8 L. Hudec I-8 O. Rosmej ... and many more!

A.S. Moore, *Phys. Review E* **102**, 051201(R) (2020)

Inner Cone

Beams

Ta₂O₅

foam liner

Conventional foams for laser-plasma experiments A review of low density porous materials used in laser plasma experiments I SI

Cite as: Phys. Plasmas **25**, 030501 (2018); https://doi.org/10.1063/1.5009689 Submitted: 19 October 2017 • Accepted: 20 February 2018 • Published Online: 16 March 2018

🔟 Keiji Nagai, 🔟 Christopher S. A. Musgrave and Wigen Nazarov

Foam class	Pore size range ^a	Density range (mg/cm ³) ^b	Element composition	High/low Z (e1)	Target dimensions (μ m)
Aerogels					
Organic aerogels (RF)	nm	10-250	CHO	Low Z	200-600
Inorganic aerogels	nm	1-250	(Si, Ta, Ga, Al) O ₂	Middle-High Z	200-600
Carbonized aerogels	nm	10-250	С	Low Z	200-600
PolyHIPE	μm	30-250	СН	Low Z	200-600
Acrylates and Methacrylates	μm	5-250	CHO	Low Z	10-600
Templated foams	nm-µm	1-250	Metal oxides	High Z	10-600
Electrospinning	nm	1-250	Metal oxides	High Z	10-600
Poly(3-methyl-1-pentene)	nm- μ m	3–250	CH ₂	Low Z	200-600

TABLE I. Foam types used in laser targets and their properties.

Conventional foams for laser-plasma experiments

Right; 2% W doped polyHIPE

POLITECNICO

MILANO 1863

→ Quasi-periodic networks Characterized by pore size

K. Nagai, et al., Physics of Plasmas 25, 030501 (2018) C. Yang et., Appl. Phys. Lett. 115, 111901 (2019)

Y. Kaneyasu et al., High Pow. Las. Sci. Eng. 9 (2021), e31

Why foam targets in laser-matter interaction?

Why Pulsed Laser Deposition of nanofoams?

Features of PLD nanofoams

PLD nanofoam in laser-matter interaction & ICF

Pulsed Laser Deposited nanofoams look different

Arbitrary composition: (pure C, metals, oxides,...) <u>Multi-scale structure</u>

A. Zani et al., *Carbon.* 56: (2013) 358–365
A. Maffini et al., *Physical Review Materials* 3 (2019) 083404
A. Maffini et al., *Applied Surface Science* 599 (2022) 153859

Arbitrary composition: (pure C, metals, oxides,...) <u>Multi-scale structure</u> Fractal-like aggregates Gyration radius (R_g) ~ 0.1 – 5 µm Fractal dimension (D) ~ 1.8 – 2.2

A. Zani et al., *Carbon.* 56: (2013) 358–365
A. Maffini et al., *Physical Review Materials* 3 (2019) 083404
A. Maffini et al., *Applied Surface Science* 599 (2022) 153859

Arbitrary composition: (pure C, metals, oxides,...) <u>Multi-scale structure</u>

POLITECNICO

MILANO 1863

Fractal-like aggregates Gyration radius (R_g) $\sim 0.1 - 5 \ \mu m$ Fractal dimension (D) $\sim 1.8 - 2.2$ Nanoparticle constituents: NP radius (R_{np}) ~ 5 – 20 nm NP density (ρ_{np}) ~ 50% – 100% of bulk

A. Zani et al., *Carbon.* 56: (2013) 358–365
A. Maffini et al., *Physical Review Materials* 3 (2019) 083404
A. Maffini et al., *Applied Surface Science* 599 (2022) 153859

Arbitrary composition: (pure C, metals, oxides,...) <u>Multi-scale structure</u>

POLITECNICO

MILANO 1863

Fractal-like aggregates Gyration radius (R_g) ~ 0.1 – 5 µm Fractal dimension (D) ~ 1.8 – 2.2

Nanoparticle constituents: NP radius (R_{np}) ~ 5 – 20 nm

NP density (ρ_{np}) ~ 50% – 100% of bulk

Fractal density scaling $\rho_f \approx \rho_{np} k \left(\frac{R_{np}}{R_{c}}\right)^{3-D}$

Why foam targets in laser-matter interaction?

Why Pulsed Laser Deposition of nanofoams?

Features of PLD nanofoams

PLD nanofoam in laser-matter interaction & ICF

Pulsed Laser Deposition

A. Maffini et al., in Nanoporous Carbons for Soft and Flexible Energy Devices, Springer, 2022

Foam properties control

Pulsed Laser Deposition

A. Maffini et al., Physical Review Materials 3 (2019) 083404

A. Maffini et al., Physical Review Materials 3 (2019) 083404

Foam properties control

Foam properties control

Example: the role of deposition pressure

A. Maffini et al., Applied Surface Science 599 (2022) 153859

Nanofoam analysis at nano- and micro-scale

=ractal scaling for
$$\rho_f \approx \rho_{np} k \left(\frac{R_{np}}{R_g} \right)^{3-D}$$
 density esitimation

A. Maffini et al., Applied Surface Science 599 (2022) 153859

Fine tuning of nanofoam density

PLD

Pressure (Ar)

PLD works fine for most of elements

Boron

Gold

Why foam targets in laser-matter interaction?

Why Pulsed Laser Deposition of nanofoams?

Features of PLD nanofoams

PLD nanofoam in laser-matter interaction & ICF

Nanofoams for advanced TNSA

M. Passoni et al., *Plasma Phys. Control. Fus.* **56** (2014) M. Passoni et al., *Phys. Rev. Accel. Beams* **19**, (2016) A. Pazzaglia et al., *Communications Physics* **3** (2020)

Nanofoams for advanced TNSA

M. Passoni et al., *Plasma Phys. Control. Fus.* **56** (2014) M. Passoni et al., *Phys. Rev. Accel. Beams* **19**, (2016) A. Pazzaglia et al., *Communications Physics* **3** (2020)

POLITECNICO

MILANO 1863

I. Prencipe et al., New Jour. Physics 23.9 (2021)

Modeling nanofoam interaction with fs lasers

3D **PIC simulations**: same average density, homogeneous vs nanofoam plasma, $a0 \sim 5 - 45$, pulse duration 30 fs

Near-critical, nanofoam

L. Fedeli et al., Scientific reports. 8:3834 (2018)

Modeling nanofoam interaction with fs lasers

3D **PIC simulations**: same average density, homogeneous vs nanofoam plasma, a0~ 5 – 45, pulse duration 30 fs

L. Fedeli et al., Scientific reports. 8:3834 (2018)

A Modeling nanofoam interaction with ns lasers

1D hydro simulations with MULTI-FM. 100% Carbon. Same areal density. Pulse duration ~2.5 ns. I=10¹⁴ W/cm²

A Modeling nanofoam interaction with ns lasers

1D hydro simulations with MULTI-FM. 100% Gold. Same mass density. Pulse duration ~2.5 ns. I=10¹⁴ W/cm²

V. Ciardiello, MSc thesis in Nuclear Engineering, 2022

ENEN

Conclusions and perspectives

PLD as a versatile alternative to conventional techniques

Conclusions and perspectives

PLD as a versatile alternative to conventional techniques

PLD nanofoams have potential application also in ICF

Can we trust 1D hydro simulation? Will the nanostructure survive long enough in ns regime? (and so on...)

Conclusions and perspectives

PLD as a versatile alternative to conventional techniques

PLD nanofoams have **potential** application also in ICF

Can we trust 1D hydro simulation? Will the nanostructure survive long enough in ns regime? (and so on...)

Experiments @ ABC are planned!

Acknowledgements

M. Passoni M. Zavelani

V. Russo

D. Dellasega

D. Vavassori

A. Maffini

A. Formenti

F. Mirani

M. Galbiati

D. Orecchia

ENEN

Thank you for your attention!

