

3rd Smilei user & training workshop

9-11 March 2022

Numerical investigation of high-energy photon emission in double-layer targets with particle-in-cell codes

Marta Galbiati

www.ensure.polimi.it

Contraction and and a second and a second and a second

M. Passoni

A. Formenti

F. Mirani

V. Russo M. Zavelani Rossi A. Pola

D. Dellasega

A. Maffini

POLITECNICO MILANO 1863

Marta Galbiati | SMILEI Workshop - 9 March 2022

Laser-Plasma Interaction with Solid Targets

Marta Galbiati

- Standard for Laser Driven Ion Acceleration
- Interesting also for other types of radiation
- But can we enhance the coupling with the laser? Yes!

Advanced Targets

Fedeli, L., Formenti, A., Cialfi, L., Sgattoni, A., Cantono, G., & Passoni,M. (2017). Structured targets for advanced laser-driven sources. PlasmaPhysics and Controlled Fusion, 60(1), 014013.

POLITECNICO MILANO 1863

... and with Double-Layer Targets (DLTs)

Marta Galbiati

Carbon Foam on Aluminum Substrate

Produced with Pulsed Laser Deposition (PLD)

Maffini, A., Pazzaglia, A., Dellasega, D., Russo, V., & Passoni, M. (2019). Growth dynamics of pulsed laser deposited nanofoams. Phys. Rev. Materials, 3, 083404.

POLITECNICO MILANO 1863

SMILEI Workshop - 9 March 2022

... and with Double-Layer Targets (DLTs)

High-Energy Photon Emission

Enhanced Acceleration of Electrons in Foam + Dense Substrate

Marta Galbiati

Emission of High-Energy Photons (keV-MeV) by

Electrons

Non-Linear Inverse Compton Scattering (NICS)

Scattering in the electromagnetic fields and head-on collision with the reflected laser pulse

Bremsstrahlung

Scattering in the Coulomb field of nuclei inside the target Improved by mm-thick high-Z substrate!

POLITECNICO MILANO 1863

SMILEI Workshop - 9 March 2022

Motivations of Research

Interests

Tunable Laser-Driven High-Energy Photon Sources

Technological Applications and Fundamental Physics Studies:

Radiography, Tomography, Interrogation of Materials, Diagnostic for laser-plasma, QED regime exploration

Challenges

• Simulations are fundamental but must be critically used

Novelty of non-conventional targets

POLITECNICO MILANO 1863 Marta Galbiati SMILEI Workshop - 9 March 2022

Non-linear Inverse Compton Scattering (NICS)

POLITECNICO MILANO 1863 | Marta Galbiati

SMILEI Workshop - 9 March 2022

Bremsstrahlung

Electron scattering in the Coulomb Field of a Target Nuclei

- relativistic description
- quantization of the motion of the electron in the Coulomb field
- screening from electrons around the nucleus
- electron-electron bremsstrahlung

Marta Galbiati

Simple Cross-Section Form $\frac{\dot{d\sigma}}{d(\hbar\omega)} = \frac{Z^2}{\beta^2} \frac{1}{\hbar\omega} \Sigma(Z, E, \kappa)$

 $\begin{array}{ll} \beta = v/c & \kappa = \hbar \omega/E \\ E \rightarrow \text{Electron Kinetic Energy} \end{array}$

Several cross-sections available:

- Seltzer-Berger (tabulated)
- Bethe-Heitler (analytic)

• ...

Koch, H. W. & Motz, J. W. (1959). Bremsstrahlung Cross-Section Formulas and Related Data. Rev. Mod. Phys., 31, 920–955.

POLITECNICO MILANO 1863

Methods: Monte Carlo inside Particle-In-Cell (PIC)

Evaluation of High-Energy Photon Emission and Radiation Reaction at PIC simulation run-time

 Time interval between two emission events given by a nonhomogeneous exponential distribution with time-dependent
 Rate of Photon Emission

• Sampling of Photon Energy and Back-Reaction

$\mathbf{p}_{ph} = rac{\hbar\omega}{pc} \mathbf{p}$	$\mathbf{p}^f = \left(1 - \frac{\hbar\omega}{pc} ight)\mathbf{p}$
--	---

Marta Galbiati

Dual Treatment of Electromagnetic Radiation !!

Gonoskov, A. et al. (2015). Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. Phys. Rev. E, 92, 023305.

POLITECNICO MILANO 1863

SMILEI Workshop - 9 March 2022

Methods: Alternatives

Evaluation of High-Energy Photon Emission after PIC simulation

 Feed a standard Monte Carlo code with the electron distribution computed by the PIC. Easy for bremsstrahlung in DLTs or with a converter.

• Analytic estimations for NICS and Bremsstrahlung

Marta Galbiati

POLITECNICO MILANO 1863

Methods: SMILEI 2D Simulations with NICS in DLTs

Carrying on Caprani, R. Compact photon sources in multi-PetaWatt facilities: a kinetic numerical investigation. (2020) M.Sc. Thesis

GALILEO

General properties		
Box size (x, y)	(Variable, 40.96 µm)	
Points per λ (x, y)	(50, 50)	
CFL	0.95	
Duration	Variable	
Processing units	144	
Boris pusher, Silver-Muller in x, Periodic in y, Load balancing, Fully Ionized		

Target Properties		
Homogeneous Foam (Z, A)	(6, 12)	
PPC e ⁻	Variable <10	
Substrate (Z, A)	(13, 27)	
Density	450 n _c	
PPC e ⁻	32	
Thickness	2 µm	
+ Contaminants		

Marta Galbiati

Laser Properties		
Wavelength λ	0.8 µm	
Shape in space	Gaussian	
Shape in time	cos ²	
Waist	3 µm	
FWHM	20 fs	
Angle of incidence	0°	
Polarization	linear, in plane	

MC Photon emission	
Minimum energy	128keV
Minimum χ	10-4
Sampling	1 pho per e ⁻
Tables	Default

12

POLITECNICO MILANO 1863

NICS in DLT

Simulation Parameters:

- Laser: $a_0 = 50 (5.4 \times 10^{21} \text{ W/cm}^2)$,
 - waist 3 μ m, FWHM=20 fs
- Homogeneous carbon foam of 15 µm and density 2 n_c
- Substrate of 2 µm of Al
 - 4 Channels involved in the Energy Exchange
 - 2 Distinct Phases of High-Energy Photon Emission

Marta Galbiati

POLITECNICO MILANO 1863

SMILEI Workshop - 9 March 2022

NICS in DLT - High-Energy Photons

• High-Energy Emission follows the Laser Pulse propagation and peaks in front of the substrate

NICS in DLT – Fields and Electrons

Relativistic Self-Superposition Counter-**Direct Laser Acceleration** Ramp Focusing in Foam when reflecting on propagation of electrons and Burst (optimal length) with the Pulse the Substrate Transversal Oscillations 30.0 FWHM of $E^2 + B^2$ Betatron Electron [arb. units] Photons 27.5 - 10000 Oscillations 25.0 - 5000 t=35 fst = 108 fsSuperposition 22.5 22.5 [البر] م 20.0 17.5 Counter-Self-Focusing 10^{1} 10^{1} [-] $u^{-1}u^{-1}$ propagating 15.0 Pulse 12.5 10^{-3} 15 20 25 30 35 0 10 15 20 25 30 35 10 5 0 5 x [µm] x [µm]

Marta Galbiati

POLITECNICO MILANO 1863

SMILEI Workshop - 9 March 2022

Analytic estimations for NICS

Emitted Power in High-Energy Photons by all Electrons

Marta Galbiati

POLITECNICO MILANO 1863

SMILEI Workshop - 9 March 2022

Analytic estimations for NICS

Spectrum in energy of all emitted Photons by Electrons

$$\frac{dN}{dE_p} = \int dt \int_{E_p}^{\infty} \left\{ \frac{dN}{dE_e} \frac{\alpha m_e c^2}{\sqrt{3\pi \hbar \gamma (E_e - E_p)}} \left[\frac{E_p^2}{E_e^2} K_{\frac{2}{3}}(y) + \left(1 - \frac{E_p}{E_e}\right) \int_y^{\infty} K_{\frac{5}{3}}(x) dx \right] \right\} dE_e \begin{array}{c} \text{Computed from Macro-Electrons} \\ \text{Macro-Electrons} \\ y = \frac{2E_p}{3(E_e - E_p)\overline{\chi}(E_e)} \end{array}$$

PO

Impact of Target Parameters for NICS

- Higher power peak \rightarrow foam length slightly longer than the self-focusing length = $\sqrt{\ln 2}w_0 \left(\frac{a_0 n_c}{n_e}\right)^{1/2}$
- Laser is absorbed at high densities → no burst
- Trend → Low densities (1-2 n_c) and large foam thickness (20-25 µm)

Changed Parameters:

- Foam densities: 1-2-5-10 n_c
- Foam length: 5-10-15-20-25 μm

POLITECNICO MILANO 1863

A₀: 20-40-50-60 (0.9-3.5-5.4-7.8x10²¹ W/cm²)

 $=5 \mu m$

 $l = 20 \ \mu m$

Methods: Bremsstrahlung Simulation

Bremsstrahlung modelling

Monte Carlo inside PIC

- Mean-field or collisional approach
- More self-consistent and realistic
- Computational Challenges:
 - ps duration
 - thick (1-10 mm) targets
 - solid densities (100-1000 n_c)

Required resources

Monte Carlo after PIC

- Standard mean-field approach.
- Thick targets \rightarrow Yes!

- Neglects electron recirculation effects
- Need to think about PIC coupling.

Most accurate collisional approach not available in open source code

POLITECNICO MILANO 1863 Marta Galbiati

Methods: Bremsstrahlung Simulation

• Averaging Approach to Bremsstrahlung simulation

$$\frac{dN}{dt} = n_i \sigma v$$

no collisions among electrons and ions

Martinez, B., Lobet, M., Duclous, R., d'Humières, E., & Gremillet, L. (2019). High-energy radiation and pair production by Coulomb processes in particle-incell simulations. Physics of Plasmas, 26(10), 103109.

lonized Species in the Plasma

Marta Galbiati

Seltzer-Berger tabulated cross-sections

Seltzer, S. M., & Berger, M. J. (1986). Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV-10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1-100. Atomic Data and Nuclear Data Tables, 35(3), 345-418.

synthesis of various theoretical and

experimental results

- range of electron energies: from electron rest energy up to 10 GeV
- atomic screening
- electron-electron bremsstrahlung

POLITECNICO MILANO 1863

Bremsstrahlung in DLTs

Simulation Parameters:

POLITECNICO MILANO 1863

- Laser: a₀=20 (8.7x10²⁰ W/cm²), waist 3 µm, FWHM=30 fs
- Carbon foam, densities 2-5-10 n_c, lengths 2-5-10-15-20 µm
- Minimum Photon energy = 10 keV
- Substrate of 1 μ m of Al \rightarrow 2D 450 n_c 3D 80 n_c

Not optimal for Bremsstrahlung

Formenti, A., Galbiati, M., & Passoni, M. (2022). Modeling and simulations of ultra-intense laser-driven bremsstrahlung with double-layer targets. Plasma Physics and Controlled Fusion, 64(4), 044009.

Analytic estimations for Bremsstrahlung

Bremsstrahlung vs NICS

Conclusions

NICS and Bremsstrahlung are both interesting for the development of **Tunable Laser-Driven High-Energy Photon Sources**.

• DLTs can be **optimized** for emission changing target parameters.

• Complementary analytical estimations are available.

 Complementary modelling strategies for Bremsstrahlung with advantages and disadvantages.

Perspectives

• Use **Smile:**) for further investigations of NICS in DLTs (e.g. 3D)

• Development of Bremmstrahlung module in **Smilei**)

• Experiments!

POLITECNICO MILANO 1863 | Marta Galbiati | SMILEI Workshop - 9 March 2022

3rd Smilei user & training workshop 9-11 March 2022

Questions? Ask now or contact me! marta.galbiati@polimi.it

