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Radioisotopes in Nuclear Medicine

Application of radioisotopes for the diagnosis and treatment of deseases.

A drug delivers radionuclides to biological target sites
The radioactive decay is exploited to:

Kill malignant cells breaking their DNA

Gather anatomical and functional information
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Radionuclides decay: cannot be stored indefinitely. Constant production is required, even in situ

Nuclear fission reactors

Production of medical radionuclides

99mTc used in 80% of nuclear diagnostics exams
133I treating and imaging of thyroid
133Xe - lung studies, half-life 5 days
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Radionuclides decay: cannot be stored indefinitely. Constant production is required, even in situ

Nuclear fission reactors Conventional accelerators (mainly cyclotrons)

Production of medical radionuclides

18F for PET scanning (half-life 1.87 hours)
67Ga for imaging of inflammation / tumors
81mKr for lung studies (half-life 13 s!)

99mTc used in 80% of nuclear diagnostics exams
133I treating and imaging of thyroid
133Xe - lung studies, half-life 5 days
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CONVENTIONAL

PROS
High current: 10 – 100 µA

High energy: 10 - 30 MeV
High activity produced

CONS

Neutron – gamma flux:
Activation of the component,
Shielding, Waste
Dimension and costs
Limited versatility:
particles and energy are
difficult to change

The current state of the art is the CYCLOTRON
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CONVENTIONAL

PROS
High current: 10 – 100 µA

High energy: 10 - 30 MeV
High activity produced

CONS

Neutron – gamma flux:
Activation of the component,
Shielding, Waste
Dimension and costs
Limited versatility:
particles and energy are
difficult to change

LASER-DRIVEN
The current state of the art is the CYCLOTRON

Potential for flexibility and cost reduction!

A. Macchi at al., Rev. Mod. Phys. 85, 751 (2013)
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Laser-Driven Particle Acceleration

A. Macchi at al., Rev. Mod. Phys. 85, 751 (2013)
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I > 1018 W/cm2

Laser-Driven Particle Acceleration

Different laser systems:

0.1-10 J, 30 fs, high rep rate(compact)
10 J-1 kJ, ps, low rep rate (large)

~μm

Different target concepts:

Simple micrometric foil
Advanced target schemes
(e.g. double layer targets)

M. Passoni et al., PPCF 61, 014022 (2020)

A. Macchi at al., Rev. Mod. Phys. 85, 751 (2013)
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Tp ~ a few MeV
Emax ~ 10s of MeV

Exponential
Proton Spectrum

μm

I > 1018 W/cm2

MV/μm 

Target Normal Sheath Acceleration

A. Higginson et al., Nature Comm. 9, 724 (2018)
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A few works in literature which use laser-driven accelerators to produce radioisotopes....

Experimental
S. Fritzler, V. Malka, G. Grillon, J. P. Rousseau et al. 

Proton beams generated with high-intensity lasers: Applications to medical isotope production. 
Applied Physics Letters, 2003. 

K.W.D. Ledingham, P. McKenna, T. McCanny, S. Shimizu et al. 

High power laser production of short-lived isotopes for positron emission tomography. 
Journal of Physics D: Applied Physics, 2004. 

I. Spencer, K.W.D. Ledingham, R. P. Singhal, T. McCanny et al. 

Laser generation of pro- ton beams for the production of short-lived positron emitting radioisotopes. 
Nuclear Instruments and Methods in Physics Research, 2001. 

TW - laser
Emax 10 MeV
11B (p,n) 11C

PW - laser
Emax 30 MeV
18O (p,n) 18F

PW - laser
Emax 37 MeV
18O (p,n) 18F

Theoretical
A. Italiano, E. Amato, F. Minutoli, D. Margarone et al.

Production of 68Ge, 64Cu, 86Y, 89Zr, 73Se, 77Br and 124I 
positron emitting radionuclides through future laser-accelerated proton beams

at Eli-Beamlines for innovative PET diagnostics, 2016

PW - laser
TALYS code A.J. Koning et al., AIP Conference 

Proceedings 769, 1154 (2005)
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Laser-Driven radioisotope generation: what is missing?

A complete numerical simulation of the process, from laser-driven 

ion acceleration to ion transport and radionuclide generation

Experimental demostration of LD medical radioisotope production in 

application-relevant conditions

Selection of medical radioisotopes that could benefit more from the 

laser-driven technology

Analytical modeling to obtain predictive scaling laws for different laser 

facilies and experimental conditions
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64Cu-ATSM – copper(II)

(diacetyl-bis (N4-methylthiosemicarbazone)) 
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64Cu for theragnostics

Reasoably high cross section for proton energy 
easily achievable with today's laser technology

Cyclotron Produced Radionuclides: Emerging PositronEmitters

for Medical Applications: 64Cu, IAEA Technical reports 2016
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Particle-in-Cell simulations

Simulation setup:

Full 3D PICs

a0=16

Spot size = 5λ

Pulse duration =15 λ/c

Four target configurations:

Simple foil, 0° incidence

Simple foil, 45° incidence

DLT, 0° incidence

DLT, 45° incidence
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Particle-in-Cell simulations

Protons spectra at time Tpeak + 40 λ/c

22.211.6 15.911.1

Simulation setup:

Full 3D PICs

a0=16

Spot size = 5λ

Pulse duration =15 λ/c

Four target configurations:

Simple foil, 0° incidence

Simple foil, 45° incidence

DLT, 0° incidence

DLT, 45° incidence
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A complete numerical simulation of the whole process

Monte Carlo simulations
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Monte Carlo simulation of proton transport and reaction

(GEometry ANd Tracking)

The toolkit allows to:

Create a geometrical model

Select a set of particles

Physics processes

Different shapes
Different materials

Physics Lists
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Monte Carlo simulation of proton transport and reaction

(GEometry ANd Tracking)

The toolkit allows to:

Create a geometrical model

Select a set of particles

Physics processes

Goal: to determine the proton-to-64Cu Yield (i.e. number of 64Cu per incident proton)

Different shapes
Different materials

Physics Lists

Setup:
1 mm thick, pure 64Ni target
4*106 proton per run
Proton sampled from PIC output spectra
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Coupling PIC and Monte Carlo

Proton-to-64Cu yield

Simple foil, 0° incidence

Simple foil, 45° incidence

DLT, 0° incidence

DLT, 45° incidence
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Coupling PIC and Monte Carlo

Proton-to-64Cu yield

Simple foil, 0° incidence

Simple foil, 45° incidence

DLT, 0° incidence

DLT, 45° incidence

Considering
- 10 Hz rep. Rate, 
- 1010 proton >1 MeV:
~ 80 MBq activity (40% of a standar PET)
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Analytical modeling to obtain predictive scaling laws

T and Eco as a function of
normalized laser intensity a0

A. Formenti et al., N. Jour. Physics 22, 053020 (2020)

L. Cialfi et al., Phys. Rev. E 94, 053201 (2016)
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Thank you for your attention!


