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A theoretical model of laser-driven ion acceleration
from near-critical double-layer targets
Andrea Pazzaglia 1✉, Luca Fedeli1,2, Arianna Formenti1, Alessandro Maffini 1 & Matteo Passoni1

Laser-driven ion sources are interesting for many potential applications, from nuclear med-

icine to material science. A promising strategy to enhance both ion energy and number is

given by Double-Layer Targets (DLTs), i.e. micrometric foils coated by a near-critical density

layer. Optimization of DLT parameters for a given laser setup requires a deep and thorough

understanding of the physics at play. In this work, we investigate the acceleration process

with DLTs by combining analytical modeling of pulse propagation and hot electron generation

together with Particle-In-Cell (PIC) simulations in two and three dimensions. Model results

and predictions are confirmed by PIC simulations—which also provide numerical values to

the free model parameters—and compared to experimental findings from the literature.

Finally, we analytically find the optimal values for near-critical layer thickness and density as a

function of laser parameters; this result should provide useful insights for the design of

experiments involving DLTs.
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Laser-driven ion acceleration is a well-established research
topic1–3. Many distinct acceleration mechanisms have been
explored so far (such as radiation pressure acceleration4,5,

breakout-after-burner6, relativistic induced transparency7,8,
collision-less shock acceleration9, magnetic vortex acceleration10).
Yet, Target Normal Sheath Acceleration (TNSA)11 is arguably the
most established and robust ion acceleration scheme. The unique
properties of TNSA ions (e.g. broad exponential spectrum with
tens of MeV cut-off energies, high bunch density, ultrafast
duration) could be exploited in the near future for a number of
interesting applications for materials characterization (e.g. parti-
cle induced x-ray emission12,13), in nuclear science (e.g. bright
neutron sources14,15, radioisotopes production16) and in the
study of harsh radiation environment effects in materials
science17,18. Nonetheless, TNSA is affected by a low conversion
efficiency of laser energy into energetic ions, which limits the use
of compact laser systems for such applications. A viable route to
overcome this limit may be to use double-layer targets (DLTs)
consisting of a thin solid foil coated with a near-critical density
layer, where the critical density nc ¼ meω

2=4πe2 marks the
transparency threshold for the propagation of an electromagnetic
wave with frequency ω (me is the electron mass and e is the
elementary charge). Both numerical simulations19–22 and
experiments23–31 have demonstrated that a laser pulse strongly
interacts with the near-critical layer, generating a larger number
of energetic electrons and increasing the ions energy and number
with respect to an uncoated target. This higher acceleration effi-
ciency has been attributed to several phenomena: the laser self-
focusing (SF) induced by the radial dependence of the refractive
index within the channel generated via the ponderomotive
force32,33, the generation of a strongly magnetized channel car-
rying high currents34 and the Direct Laser Acceleration of elec-
trons (DLA) through the betatron resonance35–37. Since in real
experiments near-critical layers are usually nanostructured
materials, the effect of realistic nanostructures was studied,
highlighting differences from the ideal uniform case38. In addi-
tion, it has been demonstrated that the laser interaction with
near-critical plasmas follows an ultra-relativistic scaling with
respect to the transparency factor �n ¼ ne=γ0nc (or the normalized
plasma density), where γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20=}

p
is the mean Lorentz

factor of the electron motion due to a laser with normalized
amplitude a0 and linear (} ¼ 2) or circular (} ¼ 1)
polarization39,40.

DLTs have been extensively studied. However, the literature
does not provide a comprehensive theoretical view able to
account for the various effects at play and to provide an esti-
mation for the optimal DLT parameters. In this work, we present
a theoretical description of laser–DLT interaction and the con-
sequential ion acceleration process. We develop a model which is
comprehensive of all the main relevant phenomena (laser self-
focusing, electron heating and ion acceleration) including the
dependence of the quantities of interest on a large set of para-
meters altogether (e.g. near-critical layer density and thickness,
laser waist and duration). Modelling the essential physical
aspects of the interaction, we are able to unfold a relativistic
scaling for the accelerated ions. We support our arguments with
an extensive multi-dimensional (2D/3D) particle-in-cell (PIC)
simulations41 campaign. By exploiting suitable approximations,
we identify a set of optimal DLT parameters (i.e. density and
thickness of the near-critical layer) which maximize the ion
energy enhancement with respect to the uncoated target case. To
this purpose we develop simple estimations that can be easily
carried out without having to perform many time-consuming
PIC simulations. Our results provide a convenient guide both for
the design of engineered DLTs and for the interpretation of laser-
driven ion acceleration.

Results
Laser–DLT interaction. As mentioned in the introduction, the
interaction between a super-intense laser pulse and a near-critical
plasma leads to the onset of complex phenomena, characterized
by a strong coupling between the electromagnetic field and the
plasma. When the transparency factor is lower than one,
�n ¼ ne=γ0nc<1, the laser can propagate within the plasma and dig
a channel in it, which in turn induces relativistic-ponderomotive
SF (see Fig. 1a). In this process, in the whole interaction volume,
the laser generates hot electrons (see Fig. 1b), which are char-
acterized by a large particles density and super-ponderomotive
mean energy. Furthermore, the strong currents induced in the
channel generate a dipole magnetic vortex with fields easily
exceeding 10kT (see Fig. 1c) which constrain the electrons to a
directional motion. Finally, part of the pulse reaches the substrate,
heating additional electrons from the surface and starting the
TNSA process. In this complex framework, we account only for
the essential mechanisms for a sufficiently accurate description of
the interaction and we restrict our analysis to a simple scheme,
depicted in Fig. 1d: normal incidence, linear polarization and
homogeneous plasma. We also assume that the laser pulse
duration is short enough that the plasma ions can be considered
almost motionless during the interaction.

In this section, we focus first on the evolution of the pulse waist
due to SF in the near-critical plasma for which we propose a
simple law. Then, we describe the pulse energy loss and the
amplitude amplification with equations valid in D-dimensional
geometry (D ¼ 1; 2; 3) which depend on few free parameters.
This formulation allows us to validate the model through both 2D
and 3D PIC simulations (in particular, in this work, with a large
amount of 2D ones and a limited number of more expensive 3D
simulations). Moreover, we calculate the hot electrons mean
energy and total particles number for both the near-critical layer
and the substrate of the DLT.

Firstly, it should be mentioned that SF is one of the most
important features of the laser–DLT interaction. The phenom-
enon occurs when ultra-high intensity lasers propagate within
near-critical plasmas. In the literature21,32 a simple expression for
the minimum achievable laser waist wm has been proposed:

wm ¼ λ
π

1ffiffi
�n

p ; ð1Þ
where λ is the laser wavelength. In order to carry out quantitative
calculations we propose the following relation for the laser waist
evolution w(x) against the pulse propagation length x inside the
plasma, which is based on a thin-lens approximation:

w xð Þ ¼ wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x�lf

xR

� �2r
; ð2Þ

xR ¼ π
λw

2
m ¼ λ

π�n; ð3Þ

lf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xR

π
λw

2
0 � xR

� �q
¼

ffiffiffiffiffiffiffiffiffiffiffi
w2
0�w2

m
�n

q
; ð4Þ

where w0 is the initial laser pulse waist, xR the Rayleigh length,
and lf the SF focal length, namely the position at which the laser is
most strongly focused in the plasma, w(lf)=wm. Equation (2)
describes the plasma focusing phenomenon as a thin lens. While
a plasma should act more like a gradient-index lens42, a simple
thin lens model is able to predict the waist measured in 2D/3D
PIC simulations (see Fig. 2a, b). It should be pointed out that the
equation should be reasonably valid for �n≳0:05 (under this
threshold we don’t expect a focusing-defocusing behaviour, but a
stable propagation43) and within a pulse propagation length of
the order of the SF focal length (x≲2lf ). At longer distances other
phenomena are induced, as laser-plasma non-linear instabilities42

and filamentation44, which distort the ideal Gaussian shape of the
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Fig. 1 Laser interaction with a near-critical plasma. a shows the transverse component of the magnetic field (the polarization plane is xy) of a super-
intense laser with a0= 8, propagating inside a uniform near-critical plasma with ne/nc= 1 (�n ¼ 0:17) at the time 20 λ/c after the start of the interaction.
The self-focusing of the pulse is evident from the figure. b shows the hot electrons density (with energy higher then mec2) at the time 20 λ/c. c shows the
transverse magnetic field at the time 36 λ/c after the start of the interaction. The magnetization of the channel should be noticed. Figure (d) shows the
schematization of our model.

Fig. 2 Evolution of laser beam parameters. The figure shows, respectively, the laser waist w (a, b), the pulse energy εp (c, d) and the pulse amplitude
a (e, f) evolution inside a uniform plasma at different propagation lengths x, normalized to the transparency factor �n and the laser wavelength λ, in 2D
(a, c, e) and in 3D geometry (b, d, f). The full lines and points refer to particle-in-cell (PIC) simulations with intensity ranging in a0= 2–8 and plasma
density ne/nc= 0.5–2, while the dashed lines refer to our model. The pulse energy in (c, d) is calculated from PIC simulations by integrating the total
electromagnetic energy, including the reflected part of the pulse; these values are compared to the results of the model by adding the reflectanceRD to the
calculated energy.
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laser. Although we expect the model to fail below a sufficiently
small waist, we have extensively validated it for w= 4 λ, which is
a very common value for tight focused ultra-intense lasers.
Indeed, focusing an ultra-intense beam closer to the diffraction
limit poses considerable technological challenges.

It is worth mentioning that lf � w0=
ffiffiffi
�n

p
when w0 � wm

(which is a reasonable approximation). Under this condition,
Eq. (2) can be approximated by

w �xð Þ
λ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

π2�n þ �x � w0
λ

� �2q
: ð5Þ

Here we defined the relativistically normalized space variable �x ¼ffiffiffi
�n

p
x=λ (defined in ref. 39 within the framework of the

ultrarelativistic similarity theory). This equation emphasizes that
the evolution of the laser waist inside the near-critical plasma
depends on x only through the �x variable and leads to self-similar
curves for equal initial waist w0/λ and for constant transparency
factor �n.

We expect the pulse propagating inside the channel to lose part
of its energy heating electrons and to increase its intensity due to
SF. To calculate the laser energy loss in the propagation we can
assume that all the electrons inside the channel are heated with
the well-known ponderomotive scaling, with arguments similar to
those presented in ref. 45:

dεp ¼ �VD�1RchðxÞD�1neCnc γ xð Þ � 1ð Þmec
2dx; ð6Þ

where Rch is the plasma channel radius, VD�1RchðxÞD�1 is the
plasma channel section, VD�1 ¼ π

D�1
2 =Γ Dþ1

2

� �
is the volume of a

D� 1ð Þ-dimensional ipersphere with unitary radius (V0= 1,

V1= 2, V2= π), and Γ the Euler gamma function. γ xð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a xð Þ2=2

q
is the electrons mean Lorentz factor in linear

polarization at a given pulse propagation length, while Cnc a
constant allowing to estimate the mean electron energy as
Cnc γ xð Þ � 1ð Þmec

2. Thus Cnc absorbs the details of the electron
heating process46, which may hold super-ponderomotive features
as seen in other works29,37,45.

Considering an ideal Gaussian pulse, both in time and space,
we can express its initial energy in D dimensions as
εp0 ¼ πD=22�D=2�1mec

2nca
2
0w

D�1
0 τc47, where τ is the fields

temporal duration (1/e) and c the speed of light in vacuum (the
full-width-half-maximum, FWHM, temporal duration and the
focal spot over the intensity, frequently used in the experimental
field, can be retrieved as τIFWHM ¼ ffiffiffiffiffiffiffiffiffiffiffi

2log2
p

τ and
wI
FWHM ¼ ffiffiffiffiffiffiffiffiffiffiffi

2log2
p

w0). Then, the normalized energy loss assumes
the following form:

1
εp0

dεpðxÞ
dx ¼ �2 2

π

� �D
2VD�1Cnc

1
τc

ne
a0nc

γ xð Þ�1
a0

rcw xð Þ
w0

� �D�1
; ð7Þ

where we introduced the ratio of the plasma channel radius to the
waist rc ¼ RchðxÞ=w xð Þ, assuming it constant. We will adopt rc as

a free parameter to describe the channel radius as a function of
the pulse waist. It is reasonable to think that the channel will be
larger than the waist (hence rc > 1), but of the same order of
magnitude.

To solve Eq. (7) we need γ(x) along the propagation length,
which can be calculated from the pulse amplitude a(x), through
the following equation:

a xð Þ
a0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εpðxÞ=εp0
w xð Þ=w0ð ÞD�1

r
: ð8Þ

Here we have neglected the pulse temporal shaping effects
because the intensity amplification during the propagation is
mostly due to SF, rather than to the temporal compression.
Indeed, the temporal compression takes place only in special
conditions, and τ is at most halved21, while the SF waist can reach
the diffraction limit, implying a waist reduction which can easly
exceed a factor of 10.

Equation (7) depends on the laser waist equation (Eq. (2)) and
can be numerically solved, coupled with Eq. (8), with a finite
difference method. In order to do so, the initial condition
εpð0Þ=εp0 must be imposed. While one could approximate this
initial condition to 1, we also take into account that part of the
laser pulse can be reflected by the plasma. We propose 2D/3D
relations for the reflectance RD (Eqs. (29) and (30) in
“Methods”), which are used to set the initial condition
εpð0Þ=εp0 ¼ 1�RD. Since Eqs. (7) and (8) depend on the waist
evolution and thus on the self-similar variable �x, both the pulse
energy and the laser amplitude evolutions along the path length
can be scaled to self-similar curves, even for very different initial
conditions (i.e. plasma density, initial waist, laser intensity, pulse
temporal duration).

Equation (7) can be solved for different values of the free
parameters Cnc and rc to find the pulse energy loss and the laser
amplitude during the propagation. The free parameters will
assume different constant values for different problem dimen-
sionality and are fixed by fitting the numerical results with the
theoretical model. Figure 2a–f shows the model results (dashed
lines) compared with PIC simulations results (solid lines with
points) in normalized units. A good agreement is observed in all
cases for both dimensionalities. We note that the fitted values for
Cnc and rc (see Table 1) are consistent with their physical
interpretation. Indeed we obtain Cnc≳1 and rc ≈ 2, which are
compatible with that the hot electron heating may be slightly
super-ponderomotive in near-critical plasmas and the channel
radius is expected to be larger but not too large than the waist.
Moreover, we observe in 2D (Fig. 1b) that the channel radius at x
= 0 is about 6λ, corresponding to rc,2D ~ 1.5, to be compared with
the fitted value of 2.0. The Cnc value is found to be a little higher
than one both in 2D and 3D, as expected. The fact that Cnc,3D is
lower than Cnc,2D by a factor of about 1.5 could be explained by
considering that, at equal peak amplitude, the mean laser

Table 1 Model free parameters.

2D 3D Physical meaning

Cnc 1.7 1.1 Corrective factor to the ponderomotive scaling for near-critical hot electrons temperature
Cs 0.52 0.35 Corrective factor to the ponderomotive scaling for substrate hot electrons temperature
rc 2.0 2.1 Ratio of the channel radius (formed by ponderomotive force) to the pulse waist
~n 1.2 × 10−3 nc 5 × 10−2 nc Hot electron density normalization constant which scales the estimated proton energy in the quasi-

stationary model

The free parameters of our model for the two-dimensional and three-dimensional cases are reported. Cnc and Cs are proportionality constants which correct the ponderomotive scaling for the near-critical
layer and substrate electrons, respectively (see Eqs. (6) and (13)). rc is a proportionality constant between the near-critical channel radius and the laser waist (see Eq. (7)). ~n is a normalization constant of
the hot electron distribution function (see Eq. (26)).
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amplitude is lower in 3D than in 2D. This dimensionality effect
has been reported also in ref. 46.

Now that we have a model for the pulse propagation in a near-
critical plasma, we characterize the hot electron population that is
generated in the same process. Solving Eq. (7) allows retrieving
the fundamental properties of the hot electrons heated by the
laser. Firstly, assuming that the electrons are the principal
absorbers of the laser energy, we can define the absorption
efficiency ηnc, i.e. the fraction of the laser energy that is converted
into hot electrons kinetic energy:

ηnc xð Þ ¼ 1� εp xð Þ
εp0

�RD: ð9Þ
Within this approximation we neglect that the pulse energy can

be directly absorbed by plasma ions or emitted as secondary
radiation, such as the synchrotron-like emission. It is worth
noting that these hypotheses are reasonably valid when the pulse
duration is short enough (tens of fs) and the intensity sufficienlty
low (a0 < 5038). We confirm that these approximations hold by
comparing the calculated ηnc(x) with the 2D PIC simulations data
(see Fig. 3a).

In this framework, it is also possible to calculate the total
number of hot electrons Nnc at a given x position, by integrating
the electron density inside the plasma channel:

dNnc xð Þ
dx ¼ VD�1Rch xð ÞD�1ne ¼ VD�1ne rcw xð Þð ÞD�1: ð10Þ

Exploting Eqs. (9) and (10), the mean hot electron energy Enc is
retrieved:

Enc xð Þ ¼ ηnc xð Þεp0
Nnc xð Þ ð11Þ

The good agreement between the calculated Enc with the one
obtained from the PIC simulations can be observed in Fig. 3b.

Up to now, we have described laser interaction with a semi-
infinite near-critical plasma. Nonetheless, if we want to describe
laser-DLT interaction, we have to take into account the effect of a
thin solid substrate, with a given thickness ds, coupled with a
near-critical plasma with length dnc. To do so, we have to
consider that the laser pulse can reach the substrate with some
residual energy and produce hot electrons at the substrate
interface, with an absorption efficiency ηs defined as

ηs ¼ NsEs
εpðdncÞ; ð12Þ

where Ns is the total number of hot electrons generated at the
surface of the substrate, and Es is their mean energy which can be
expressed by the ponderomotive scaling, as done in Eq. (6):

Es dncð Þ ¼ Cs γ dncð Þ � 1ð Þmec
2; ð13Þ

where Cs is a constant which includes the physical details of the
surface interaction, which may not exactly follow the ponder-
omotive scaling, and γ is the mean Lorentz factor at a given near-
critical plasma thickness x= dnc. To calculate the total number of
substrate electrons, the efficiency ηs must be determined. The
dependence of the absorption efficiency into hot electrons on the
laser intensity is a topic adressed in several works48–51. Here, in
order to assure the consistency with the 2D PIC simulation
results, we fit the absorption efficiency in the range a0= 1–16
from bare solid target simulations. We obtain the linear relation
ηs= 0.00388 a0+ 0.04257 (see Fig. 4a). Following the same
method adopted for Cnc and rc, we fix Cs through the fitting of the
mean substrate electrons energies calculated from Eq. (16) and
the ones retrieved from PIC simulations with a bare target in the
intensity range a0= 1–16. The retrieved value of 0.52 in 2D, less
than one, is consistent with the analysis of ref. 46. Again, the Cs,2D

value is 1.5 times the Cs,3D due to the higher mean laser envelope
amplitude.

Finally, we note that the electron population in the near-critical
layer is generated directionally in the magnetized plasma and it
tends to mix toghether with that of the substrate. Thus, we define
a new single population with a mean energy EDLT(dnc) obtained as
a weighthed average of the two:

EDLT dncð Þ ¼ ηsεpðdncÞþηnc dncð Þεp0
Ntot dncð Þ ; ð14Þ

where Ntot dncð Þ ¼ Ns dncð Þ þ Nnc dncð Þ is the total number of hot
electrons. Since �x is the actual independent variable, we normalize
the near-critical layer thickness in the same fashion, by
introducing �dnc ¼

ffiffiffi
�n

p
dnc=λ. The comparison between the results

of the model and the PIC simulations, in Fig. 4b, shows also in
this case a good agreement for �dnc≲2

ffiffiffi
�n

p
lf =λ � 2w0=λ, which is

another indication that the Cnc,2D and rc,2D values can be
considered acceptable. The figure indicates that the mean energy
of DLT electrons grows when increasing the near-critical layer
thickness until a maximum value is reached, at the SF focal
length. At this length the energies of both the near-critical layer

Fig. 3 Evolution of electron heating in a near-critical layer. a shows the absorption efficiency ηnc of the laser energy into the hot electrons of the near-
critical layer for different laser propagation lengths x, normalized to the transparency factor �n and the laser wavelength λ. The full lines and points refer to
2D particle-in-cell (PIC) simulations with intensity ranging in a0= 2–8 and plasma density in ne/nc= 0.5–2, while the dashed lines refer to our model.
b shows the mean energy Enc of the hot electrons of the near-critical layer, normalized to the ponderomotive scaling γ0 � 1

� �
mec

2, for different laser
propagation lengths. The full lines and points refer to 2D PIC simulations with intensity ranging in a0= 2–8 and plasma density in ne/nc= 0.5–2, while the
dashed lines refer to our model.
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and substrate hot electron populations are at their maxima due to
the SF intensity amplification. Furthermore, it should be observed
that EDLT tends, for increasing �dnc values, to the near-critical layer
electrons mean energy Enc. This is due to the high absorption
efficiency of the near-critical layer exceeding the one of the
substrate electrons, as can be seen by the comparison between
Figs. 3a and 4a.

Ion acceleration with the near-critical DLT. In this section, we
estimate the maximum ion energy ϵmax using a DLT target. To do
so, we exploit a quasi-stationary TNSA model (see “Methods”
section), combined with the DLT hot electrons mean energy that
we deduced in the previous Section and compare the results with
the 2D/3D PIC simulations. Moreover, we discuss the different
features in the DLT proton acceleration in 2D and 3D.

To estimate the accelerated ions energy we use the approximate
relation ϵmax

p ¼ Th log nh0=~nð Þ � 1½ � (Eq. (26)) for protons, and
ϵmax ¼ Zϵmax

p =A for ions with Z charge and A mass. Therefore,
we need to express the hot electron temperature Th and density
nh0 according to our model. Th is related to the electron energy
EDLT with a functional dependence determined by the shape of
the hot electron distribution function. While different kinds of
distribution functions can be plugged into the quasi-static TNSA
model52, here we consider a perfectly exponential spectrum, by
which we have Th= EDLT(dnc). To calculate nh0 we assume that
the electrons are spread uniformly in a ‘cylinder’ with volume of
VD�1w

D�1
0 ds, where ds is the substrate thickness:

nh0 ¼ Ntot dncð Þ=VD�1w
D�1
0 ds. Lastly, to carry out the proton

energy estimation we have to fix the ~n free parameter. The
parameter ~n comes from the adopted model for ion acceleration.
In this model ~n represents the density of hot electrons far away
from the target, where the electrostatic field driving the
acceleration vanishes. Since this quantity does not represent a
straightforward physical observable, we leave it as a free
parameter to be fitted from simulation results with the bare
solid target, dnc= 0. We obtain the value of 1.2 × 10−3 nc and 5 ×
10−2 nc in 2D and 3D, respectively. Consistently with the physical
interpretation of ~n, these values are well below nc.

The resulting maximum proton energy is compared to the 2D
PIC data in Fig. 5a, where a remarkable agreement is obtained.
The data are represented as a function of the normalized abscissa
�dnc ¼

ffiffiffi
�n

p
dnc=λ, as done in Fig. 4b. The fact that, at a given a0 and

for different values of �n, the proton energies lie on almost the
same curve is an indication that the proton energy is roughly
proportional to the mixed population temperature and it follows
the same relativistic normalization. Another indication of this
point is that, referring to Fig. 5b, all the points tend to collapse to
a self-similar curve when the maximum energy is normalized to
the ponderomotive scaling γ0−1, similarly to what was done for
the near-critical layer electrons (see Fig. 3b).

It should be noticed that the maximum of the self-similar curve
is situated at about the initial waist value w0/λ. This behaviour is
explained by the following considerations: since the proton
energy linearly depends on the electrons temperature, it reaches
its maximum value when the mean energy of DLT electrons
reaches its maximum as well, at the SF focal length. For this
reason it is quite straightforward to estimate the optimal
normalized thickness for the near-critical layer as
�doptnc � ffiffiffi

�n
p

lf =λ � w0=λ, which is similar to the results obtained
in refs. 21,22,26,31,32.

We also numerically solved the 3D equation set with a finite
difference method for a0= 4 and the resulting proton energies are
compared to 3D PIC simulations in Fig. 6a, b, against the
normalized thickness and density, respectively. The model is
remarkably accurate in this case as well, even if the �n>0:5 cases
suffer from a limited error, probably due to the overestimation of
the reflectance at relatively high �n (see “Methods”). We note that
also in the 3D case the largest ϵmax

p is obtained at about the SF
focal length.

It should be noticed that in 3D the proton energies do not lie
on a self-similar curve for different �n values, as seen in the 2D
case instead. This is due to the form of the equations which
depend on �n in a different fashion: in particular, Eq. (8) predicts a
higher amplitude amplification with respect to 2D, indicating a
stronger SF for �n approaching 1. This has an effect also on the
energy loss equation and the total number of near-critical layer
electrons (Eqs. (7) and (10)), where the waist appears raised to the

Fig. 4 Electron heating in the Double-Layer-Target (DLT). a shows the absorption efficiency ηs of the laser energy into hot electrons, in the bare target
case, retrieved from 2D particle-in-cell (PIC) simulations, as a function of the laser intensity a0. The dashed line refers to the fit ηs= 0.00388 a0+
0.04257. b shows the DLT hot electron mean energy EDLT, with a near-critical layer of thickness dnc normalized to the transparency factor �n and the laser
wavelength λ. The full points refer to 2D PIC simulations with intensity a0= 8 and plasma density in ne/nc= 0.5–2, while the lines refer to the hot electron
energies calculated by our model relative to the substrate (dashed lines), the near-critical layer (dotted lines) and the weighted average (continuous lines).
Here the maximum value of the hot electrons mean energy is observed at the Self-Focusing focal length lf, equal to 4.
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second power in 3D. In addition, due to Eq. (30), the reflectance
has a steeper trend on the normalized density (see “Methods”),
suggesting that lower �n values allow exploiting more efficiently
the pulse energy for hot electrons heating. We therefore expect
that an optimal density value exists, where the SF is sufficiently

strong to produce high mean energy electrons, yet the reflected
part of the pulse is at the same time reduced.

Finally, we compared the 3D model predictions, which should
give more realistic results, to available experimental data. Among
all the experimental data obtained so far with DLTs, only a
limited number of cases satisfy all the hypotheses introduced in
our model, namely normal incidence, short pulse duration and
uniform near-critical layer (see Table 2). In particular, we take
into account the experimental cut-off energies of protons and
carbon ions from refs. 26,29, obtained, respectively, with linear and
circular polarization. To include circular polarization in the

model we only adjusted the Lorentz factor to γ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a xð Þ2

q
in all the calculations. The free parameters were set to the 3D
values of Table 1, except for ~n ¼ 3´ 10�2nc, fixed by fitting the
maximum energy of the protons obtained with bare targets. Since
we don’t have a realistic 3D fit for the substrate electron
absorption ηs, we exploited for ηs the scaling law presented in

Fig. 5 Proton cut-off energy in two dimensions: comparison between model and simulations. Cut-off proton energy ϵmaxp obtained in 2D particle-in-cell
(PIC) simulations with fixed substrate thickness and spot size and variable near-critical layer thickness dnc (normalized to the transparency factor �n and the
laser wavelength λ) and density ne, with intensity ranging in a0= 2–8. In (a) the simulation results (points) are compared with the cut-off proton energy
predicted by our model (dashed lines). In (b) the PIC proton energies are normalized to the ponderomotive scaling ðγ0 � 1Þmec

2. Here the maximum value
of the proton energy is observed at the Self-Focusing focal length lf, equal to 4.

Fig. 6 Proton cut-off energy in three dimensions: comparison between model and simulations. The cut-off proton energy ϵmaxp obtained by 3D particle-in-
cell (PIC) simulations are compared to the predictions of our model. The substrate thickness, spot size and intensity are fixed (a0= 4), while the near-
critical layer thickness dnc, normalized to the transparency factor �n and the laser wavelength λ (a) and density ne, normalized with the transparency factor �n
(b) are varied.

Table 2 Model bounds.

a0 τ
--
n dnc ds

Lower bound ≈1 / ≈0.05 0 a0λ
π

nc
ne

� �
s

Upper bound ≈50 ≈100 fs 1 ≈2lf /

Lower and upper bounds for the model parameters, which respect the model hypotheses. a0 is
the normalized laser amplitude, τ the laser duration, �n ¼ ne=γ0nc the transparency factor (with
ne and nc the electron and critical density, respectively), dnc the near-critical layer thickness, and
ds the substrate thickness. lf is the Self-Focusing focal length (see Eq. (4)). λ is the laser
wavelength. The slash indicates that the parameter bound is not limited by the model.
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ref. 48, based on experimental data. We also included a 10% error
in the reported values of a0, τ, w0, ne/nc to explicitly take into
account experimental errors and obtain a confidence area.
Figure 7 represents these results, showing a good agreement
with the protons and carbon ions experimental data. This
confirms the validity of the 3D model in predicting the ions
maximum energies for different species and also in different
polarization conditions.

Determination of optimal near-critical layer parameters. In the
previous section, we noted that in the more realistic 3D case the
cut-off proton energy is sensitive not only to dnc but also to the �n
parameter. To support this point we calculated ϵmax

p with the 3D
model, for w0= 5 λ and a0= 32, as a function of ne/nc and dnc/λ

and represented the results in Fig. 8a. The highest predicted
proton energies lie on an island with optimal thickness well
approximated by the SF length, corresponding to
�doptnc ¼ ffiffiffi

�n
p

lf =λ � w0=λ, and for a limited range of densities. For
this reason not only the thickness, but also the density of the
near-critical layer must be carefully chosen to optimize the ion
acceleration process. In order to find an explicit relation for the
optimal near-critical layer parameters, we solve the 3D geometry
model Eqs. (1)–(14), (26) and (30) in an approximate analytical
way.

First, we observe that Eq. (26) predicts a linear dependence of
the proton energy on the hot electron temperature, and weaker
logarithmic dependence on the hot electrons density. Thus, the
ion energy enhancement factor (defined as the ratio of the cut-off
proton energy obtained with the DLT to the one obtained with
the standard target) can be roughly estimated with the hot
electrons enhancement factor, defined as EDLT dnc; neð Þ=E0

s , where
E0
s ¼ Cs;3D γ0 � 1

� �
mec

2 is the hot electron mean energy obtained
in the standard bare target case. Thus the DLT temperature
equation (Eq. (14)) should be analytically solved. Exploting
Eqs. (10) and (12) to re-write the denominator, we find the
relation:

EDLT xð Þ
E0
s

¼
1þ ηs � 1

� � εp xð Þ
εp0

�R3D

ηs

ffiffiffiffiffiffiffi
εp xð Þ
εp0

r
w xð Þ
w0

þ 2
ffiffi
2

p
Cs;3Dr

2
c;3Dffiffi

π
p �n

τc

R x
0

w x0ð Þ
w0

� �2
dx0

: ð15Þ

To solve Eq. (15), an explicit expression for εp xð Þ=εp0 should be
written. To do so, we restrict the analysis to the ultra-relativistic
limit (a0≫ 1) where the normalized amplitude is proportional to
the Lorentz factor (aðxÞ � ffiffiffi

2
p

γðxÞ). Under this approximation,
Eq. (7) reduces to

1
εp0

dεp xð Þ
dx � � 2

ffiffi
2

p
Cnc;3Dr

2
c;3Dffiffi

π
p �n

τc
w xð Þ
w0

ffiffiffiffiffiffiffi
εp xð Þ
εp0

r
: ð16Þ

This equation can be solved by the variable separation method to
obtain an analytical solution:

εp xð Þ
εp0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R3D

p �
ffiffi
2

p
Cnc;3Dr

2
c;3Dffiffi

π
p �n

τc

Rx
0

w x0ð Þ
w0

dx0
� �2

: ð17Þ

Fig. 7 Ions cut-off energy: comparison between model and experiments.
Comparison between cut-off ions energy ϵmax from experimental data26,29

(points) and our model (continuous line), as a function of the near-critical
layer thickness dnc, normalized to the transparency factor �n and the laser
wavelength λ. The filled area represents the model predictions considering
a 10% error in the laser intensity, waist and temporal duration, and in the

near-critical layer density.

Fig. 8 Optimization of Double-Layer-Target parameters. a shows the cut-off proton energy ϵmaxp;DLT , calculated solving numerically the 3D model from Eqs.
(1)–(14), 26 and (30) (with a0= 32, w0= 5 λ) as a function of the density ne/nc and thickness dnc/λ of the near-critical layer; on top of the image the Self-
Focusing (SF) focal length is represented (Eq. (18)). b shows that the optimal thickness doptnc =λ (solid blue curve) as a function of the density, calculated
numerically from the data of Figure (a), superimposes to the SF focal length lf (dashed blue curve), calculated by Eq. (18); the orange solid curve represents
the enhancement factor calculated by Eq. (21) to be compared to the enhancement factor ϵmaxp;DLT=ϵ

max
p;bare (orange dashed curve), calculated numerically from

Figure (a); the orange diamond represents the optimal density value and the relative enhancement factor obtained by Eqs. (23) and (25).
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As previously mentioned, the highest temperature of the DLT hot
electron population is found at the SF length:

�doptnc ¼ ffiffiffi
�n

p lf
λ � w0

λ : ð18Þ
By substituting this value into Eq. (17), the pulse residual energy
at the SF length, which depends only on the normalized density �n,
is retrieved:

εp �n;�doptncð Þ
εp0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R3D

p �
ffiffi
2

p
Cnc;3Dr

2
c;3Dffiffi

π
p �n

τc
wmxR
2w0

lf
xR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lf

xR

� �2r" 

þ sinh�1 lf
xR

� �i�2
ð19Þ

where the
R x
0w xð Þ=w0dx integral was solved explicitly from

Eq. (1). The term in the square brackets tends to (lf/xR)2 when lf/
xR increases (when lf/xR > 2, which is equivalent to �n≥ λ2=2w2

0,
the relative error is under 50%), thus the energy loss can be
expressed as

εp �n;�doptncð Þ
εp0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R3D

p � Cnc;3Dr
2
c;3Dffiffiffiffi

2π
p

ffiffi
�n

p
w0

τc

� �2
: ð20Þ

Now Eq. (20) can be used to write the enhancement factor as a
function of �n only; in addition, owing to the fact that ηs is often
quite low compared to ηnc at the SF length (see Figs. 3a and 4a),
we can neglect its contribution, which is equivalent to state that
EDLT tends to Enc at the SF focal length, as observed in Fig. 4b:

EDLT �n; �doptnc
� �
E0
s

� Enc �n; �doptnc
� �
E0
s

¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�R3D

p � Cnc;3Dr
2
c;3Dffiffiffiffi

2π
p

ffiffi
�n

p
w0

τc

� �2
�R3D

2
ffiffi
2

p
Cs;3Dr

2
c;3D

3
ffiffi
π

p
ffiffi
�n

p
w0

τc 1þ 3λ2

π2w2
0�n

� � :

ð21Þ
Furthermore, we exploit that the reflectance R3D approaches

zero when the transparency factor is sufficiently low, approxi-
mately �n<1=4 (this assumption is verified a posteriori in
“Methods”). To find the normalized density which optimizes
the enhancement factor, we calculate the derivative of Eq. (21)
and impose it to zero. The derivative numerator is proportional
to �n3=2 þ 3ϖ�n1=2 � 4ϖ=ρ, where ϖ ¼ 3λ2=π2w2

0 and ρ ¼
Cnc;3Dr

2
c;3Dw0=

ffiffiffi
2

p
πτc are constants. Since ϖ approaches zero

and �n is assumed low, the term 3ϖ�n1=2 is an infinitesimal of
higher order than 4ϖ=ρ and can be neglected (also this
approximation is verified in “Methods”) in order to easily find
the zero of the derivative, which is as follows:

�nopt � 4ϖ
ρ

� �2=3
¼ 12

ffiffiffiffi
2π

p
π2Cnc;3Dr

2
c;3D

λ2τc
w3
0

� �2=3
: ð22Þ

Equations (18) and (22) can be reformulated in dimensional units
to obtain

nopte � 0:91γ0nc
λ2

wI
FWHM

2
τIFWHM

c
λ

� �2=3
; ð23Þ

doptnc � 0:84wI
FWHM

ffiffiffiffiffiffi
γ0nc
nopte

q
� 0:88 wI

FWHM
2=λffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τIFWHMc=λ3
p ; ð24Þ

where the numerical values are calculated from the free
parameters of Table 1 and the intial laser waist and the temporal
duration are expressed as the FWHM over the intensity. As a final
step, the optimal near-critical parameters can be used to

determine the value of the optimized enhancement factor.
Substituting �nopt in Eq. (15) and neglecting again the factor ϖ,
we obtain

EDLT nopte ; doptnc
� �
E0
s

� 3
2

Cnc;3D

Cs;3D
1� 1

π

ffiffiffi
3

p
Cnc;3Dr

2
c;3D

2
λ

τc

 !2=3
2
4

3
5

� 4:58 1� 0:92
λ

τIFWHMc

� �2=3
" #

:

ð25Þ
The comparison between the optimal values analytically

estimated by Eqs. (23)–(25) with the numerical solution of the
3D model are satisfactory, as shown in Fig. 8b.

Discussion
We derived explicit relations for the optimal near-critical layer
parameters which depend on the pulse waist, temporal duration
and intensity. In particular, we obtained from Eqs. (23) and (24)
that a larger waist requires a thicker and less dense near-critical
layer in order to efficiently focus the laser, keeping its energy loss
limited, and heat the electrons to higher energies. An opposite
behaviour is observed for the pulse temporal duration: the pulse
energy increases linearly with τ, at fixed intensity, which means
that the laser can be more strongly focused using higher densities
and lower thicknesses, without an excessive energy loss. Equation
(23) predicts also that ne should be increased as the laser intensity
increases (since γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20=2

p
), because the relativistic effects

make the plasma more transparent.
The proton energy enhancement factor (Eq. (25)) is quite

straightforward to interpret: when the square brackets term
approaches the unity (for higher temporal durations), �Eopt

DLT tends
to a constant, equal to about 3Cnc;3D=2Cs;3D � 4:6. This can be
interpreted as the ratio of the super-ponderomotive hot electron
temperature of the near-critical plasma to the ponderomotive
energy for a bare solid foil; for this reason, within the validity
ranges of the proposed model, the maximum enhancement value
actually remains invariant with respect to the laser parameters.
The obtained enhancement factor appears quite reasonable in
light of the published experimental results, since enhancements in
the range 1.5–3 have been reported in the literature24–31. Equa-
tions (23)–(25) can be regarded as a useful tool to carry out
experiments which aim at optimizing the DLT performances and
to scale the results to other laser sources.

The validity of our theoretical calculations is of course limited
by the adopted initial assumptions and approximations: making
reference to Table 2, the model is able to make accurate predic-
tions when the pulse amplitude is relativistic, yet, in order to
neglect the plasma ions motion and the synchrotron-like radion,
the pulse duration is short enough (<100 fs) and the intensity
sufficiently low (a0 < 50). Moreover, as previously explained, our
waist evolution equation, describing the self-focusing, is reason-
ably valid for near-critical density (0:05<�n<1) and for near-
critical layer thickness lower than about two-times the self-
focusing length. Since we are describing TNSA acceleration, the
substrate should not be destroyed by the laser. A lower limit for
its thickness can be given by the optimal thickness for RPA light
sail, ds ¼ a0λ=π nc=neð Þs4. Approaching this value we expect
radiation pressure to distort the ions spectrum and ultimately,
under this threshold, to disrupt the target and suppress ion
acceleration.

In addition, we initially assumed linear polarization, homo-
geneous plasma and normal incidence. Nevertheless, our model
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lets us gain insights on non-ideal configurations as well. Firstly,
we point out that the laser interaction with the near-critical
plasma and, ultimately, the enhancement factor should be weakly
dependent on the pulse polarization. It was demonstrated in a
previous simulation work38 that P and C polarized pulses pro-
duce, when the first layer is sufficiently transparent (�n≲0:3),
similar electron temperatures and thus we expect comparable
Cnc,3D values in this density range. This is confirmed by the good
agreement between experimental data and model results observed
in Fig. 7. The independence of the DLT proton energy on the
polarization was also observed experimentally in refs. 27,28.
Nonetheless, it is worth noting that in C polarization, the γ0
factor differs from the one in linear polarization of a factor
about

ffiffiffi
2

p
.

Secondly, our analysis allows making some considerations
about the near-critical plasma homogeneity effects: PIC simula-
tions works38,40 reported that a nanostructured plasma, with an
inhomogeneity scale greater than the laser wavelength, can sup-
press the DLA resonant mechanism, with a reduction in the
electron temperature. Moreover, it has been shown that, when
�n≲0:3, the nanostructure is capable of increasing the number of
mildly energetic electrons, and keeping the total pulse energy
absorption similar to the homogeneous case. To take into account
these effects a simple corrective factor αns could be introduced
(with 0 < αns < 1) which adapts the near-critical layer hot electron
temperature (Eq. (11)) and number (Eq. (10)) to the nanos-
tructured case: EnsðxÞ ¼ αnsEncðxÞ and NnsðxÞ ¼ NncðxÞ=αns. We
emphasize that this point is beyond the scope of this work and it
should be the aim of a deeper analysis.

Thirdly, we believe that the variation of the incidence angle
from the normal could be the most crucial issue, with respect to
the other two. Indeed, if the pulse interacts with a tilted near-
critical plasma, the self-focusing axial simmetry is destroyed,
inducing other effects: such as the pulse refraction and a mis-
match in the angular distributions of the hot electrons popula-
tions (the near-critical ones should be accelerated in the laser
direction while the substrate ones along the normal of the target,
eventually separating at the rear of the substrate).

In conclusion we have quantitatively described the essential
aspects of ultra-intense laser interaction with near-critical DLTs,
characterizing the pulse attenuation, the SF intensity amplifica-
tion and the hot electrons populations mean energy and total
number. The free parameters adopted in this theoretical
description were fitted from 2D and 3D PIC simulation results,
finding a reasonable agreement in both the trends and the
absolute values of all the observed quantities. We could have let
the free parameters vary depending on the specific configuration,
however, we found a good agreement even by fixing them to the
reported values once and for all.

We coupled this model with a well-established quasi-stationary
TNSA model in order to estimate the maximum energy of the
accelerated ions for different near-critical layer densities and
thicknesses. We observed both in the 2D/3D model and in 2D/3D
PIC simulations a self-similar behaviour in the proton energy
with respect to the normalized thickness �dnc ¼

ffiffiffi
�n

p
dnc=λ, with a

maximum at the self-focusing length �doptnc � ffiffiffi
�n

p
lf =λ � w0=λ. We

used the 2D version of our model to validate the hypotheses of
the model itself. We did this by comparing the model results with
2D PIC simulations results for a large number of target densities
and thicknesses. On the other hand, the 3D version of the model
is intended as a convenient tool for the interpretation of 3D
simulations and experimental results and to guide their design.
Finally, the explicit model solution, valid in the ultra-relativistic
limit, can be exploited to explicitly calculate the optimal near-
critical layer density and thickness to maximize the proton

energy. We showed that the retrieved values depend directly on
the specific laser source used for the acceleration experiment, in
particular on its intensity, its focal spot and its temporal duration.
Moreover, we derived a theoretical maximum enhacement of the
ion energy that can be obtained using a DLT with respect to a
standard foil. We found that this only depends on the ratio of the
near-critical super-ponderomotive electron temperature to the
ponderomotive energy of the electrons in the substrate. We also
discussed the validity ranges of our model and we suggested
possible ways to widen them.

Our results provide an effective tool to design near-critical
DLTs that are optimized for the purpose of laser energy con-
version into hot electrons, hence for laser-driven ion acceleration.
At this regard, we obtained a simple recipe for the optimal DLT
properties. These properties (i.e. density and thickness of the
near-critical layer) can be relatively easy controlled and
manipulated during the DLT production phase, which usually
relies on advanced synthesis techniques28,30,53–56. Certainly,
optimizing a DLT-based laser-driven ion source is also of great
interest for the potential applications of TNSA, since it would
allow to obtain higher ion energies without having to improve the
laser system. Lastly, our theoretical approach could be used in
other contexts than TNSA, for instance the DLT parameters
could be suitably tuned to optimize other acceleration mechan-
isms (e.g. magnetic vortex acceleration with free-standing near-
critical plasmas or radiation pressure acceleration with ultrathin
substrate DLTs) or even other physical processes (e.g. photon
sources by synchrotron-like emission).

Methods
Particle-in-cell simulations. A total of 58 simulations were performed with the
open-source, massively parallel code piccante57. The laser pulse had an idealized
cos2 temporal profile of the fields (to approximate an ultra high contrast laser) and
a Gaussian transverse profile, and it was linearly polarization with the electric field
lying in the simulation plane (P-polarization). The temporal duration was 15 λ/c
(FWHM of the fields). The intensity was varied between a0= 2 and a0= 8 at fixed
normal incidence. These parameters, if scaled to Ti:Sapphire lasers (λ= 800 nm),
correspond to a 28.5 fs FWHM pulse, attaining a peak intensity in the range
8:7 ´ 1018W=cm2<I<1:4 ´ 1020W=cm2 which is found in small-medium scale
super-intense laser facilities58.

For the 2D simulations with the near-critical uniform plasma only (used to
study the SF, the pulse energy loss and amplification), a 4 λ waist (corresponding to
a spotsize FWHM about 3.7 μm) and a 100 λ × 60 λ box were used, with a
resolution of 20 points per wavelength. The plasma filled a 50 λ × 60 λ box starting
from x= 0; 9 macro-electrons per cell were used. We simulated the following
densities: 0:5 nc; 1 nc; 2 nc. The laser was focused at the vacuum-plasma boundary.

For the 2D simulations with the DLT (used to study the DLT hot electrons
mean energy and the proton cut-off energy), a 4 λ waist and a 200 λ × 120 λ box
were used, with a resolution of 64 points per wavelength. The near-critical layer,
starting at x= 0, had 10 macro-electrons per cell with densities of 0:5 nc; 1 nc; 2 nc
and thickness varied in the range 0.5–32λ; 64 macro-electrons were used for the
solid density layer, with density fixed to 64 nc and thickness 0.5 λ. The laser was
focused at the near-critical layer-substrate boundary. The laser was focused at the
near-critical layer-substrate boundary. It is worth considering that a laser waist of
4 λ implies a Rayleigh length of ~50 λ, which is larger than the longest near-critical
layer considered in our simulation campaign. For this reason, within the parameter
range that we have explored, it is reasonable to expect a small dependence of the
simulation results on the position of the focal spot of the beam.

For the 3D simulations with the DLT, a 5 λ waist and a 100 λ × 60 λ × 60 λ box
were used, with a resolution of 20 points per wavelength. The near-critical layer,
starting at x= 0, had 10 macro-electrons per cell with densities of 0.5, 1, 1.5, 1.8,
2.3, 3 nc and thickness varied in the range 4–24 λ; 40 macro-electrons were used for
the solid density layer, with density fixed to 40 nc and thickness 0.5 λ. The laser was
focused at the vacuum-plasma boundary.

We performed additional convergence tests to ensure that both the spatial
resolution and the number of macro-electrons per cell were adequate for our
physical scenario. The case a0 = 4, P-polarization, homogeneous plasma was
selected and simulations with resolution of 20 and 40 points per wavelength were
carried out. Negligible differences were observed for the electron energy spectra,
the absorption efficiency and the proton energy in these cases.

In all the simulated cases the plasma was fully pre-ionized and the charge/mass
ratio of the ions was 0.5 (e.g. C6+). The electron population was initialized with a
small temperature (few eVs) to avoid numerical artefacts. In order to verify that
this choice did not affect our results, we performed an additional simulation with a

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00400-7

10 COMMUNICATIONS PHYSICS |           (2020) 3:133 | https://doi.org/10.1038/s42005-020-00400-7 | www.nature.com/commsphys

www.nature.com/commsphys


higher initial temperature (~1 keV) in a reduced box, where no differences in the
simulation were observed.

Several analyses were performed on the PIC simulations: the normalized

amplitude of the pulse was calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðxÞ2 þ BðxÞ2

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 þ B2

0

p
where the

propagation length x is calculated as the position of the amplitude half maximum.
In a similar way the pulse waist was calculated as the radial width at 1/e threshold
of the fields. The total energy of the laser was approximated by the integral over the
whole box of the electromagnetic energy density relative to the Bz and the Ey
component; the reflectance was calculated as the ratio of the reflected energy to the
total one. The electron mean energies were calculated on the whole box excluding
the non-relativistic electrons, namely the ones with energy lower than mec2. Since
in 2D simulations the proton energy does not saturate we set the time at which the
maximal proton energy is calculated by imposing the energy time derivative to a
constant59.

Quasi-stationary TNSA model. Several theoretical models have been proposed to
estimate some of the most important features of laser accelerated ions. Three main
branches of TNSA models exist, defined by a different treatment reserved to the ion
dynamic: quasi-stationary60, dynamical61, and hybrid62. A model that provides a
good agreement with the experimental results in a wide range of conditions is the
quasi-stationary description60,63–66. This model gives an estimation of the ions
cutoff energy in TNSA, which reads as follows:

ϵmax
p ¼ Th φ* � 1þ β φ*ð Þ

I φ*ð Þeζþφ*

	 

� Th log nh0

~n

� �� 1
� �

; ð26Þ

where Th is the hot electron distribution temperature, φ* is the normalized

potential inside the substrate φ* ¼ ϕ=Th , ζ ¼ mec
2=Th , β φ*

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ* þ ζð Þ2�ζ2

q
and I φ*

� � ¼ R β φ*ð Þ
0 e�

ffiffiffiffiffiffiffiffiffi
ζ2þp2

p
dp. The normalized potential is retrieved by solving

the implicit equation ~n
I φ*ð Þ
ζκ1 ζð Þ e

φ* ¼ nh0, with nh0 the hot electron density, and ~n a

normalization constant of the hot electron distribution function that is used as a
free parameter66. Note that the last approximated part of Eq. (27) is verified under
the φ*≫ 1 condition, which has the physical meaning of imposing that the hot
electrons distribution cut-off energy is much higher than its temperature, which is
a very common and reasonable condition.

Reflectance calculation in two and three dimensions. It is well known that an
electromagnetic wave is reflected by an overcritical plasma while it is transmitted in
an undercritical medium. In our case we can have a mixed behaviour since a
plasma can be at the same time relativistically undercritical (ne/γ0nc < 1), but
classically overcritical (ne/nc > 1). Indeed, if we consider a Gaussian pulse amplitude
envelope in 2D, a t; yð Þ ¼ a0e

�t2=τ2 e�y2=w2
0 , near the laser peak the electrons move at

relativistic speed allowing the pulse to propagate; while in correspondance of the
envelope tails, the electrons move with a not-relativistic quiver motion eventually
resulting in an overcritical reflecting plasma.

Making reference to Fig. 9a, to calculate the reflectance in 2D, we firstly find the
threshold of this process given by the condition ne=γ t; yð Þnc ¼ 1. Roughly

approximating γ t; yð Þ � a t; yð Þ= ffiffiffi
2

p
we can rewrite it as

ne
γ0nc

¼ γ t;yð Þ
γ0

¼ e�
t2

τ2 e
�y2

w2
0 : ð27Þ

With a change of variables (t=τ ¼ ξ and y=w0 ¼ χ) and taking the natural
logarithm of the latter equation we obtain

ξ2 þ χ2 ¼ � log �n: ð28Þ

To calculate the fraction of energy which is not reflected, we have to integrate
the electromagnetic energy density and we use the more convenient polar
coordinates r2 ¼ ξ2 þ χ2, since Eq. (28) represents a circumference:

1�R2D ¼
R ffiffiffiffiffiffiffiffiffi

� log �nð Þ
p
0

re�2r2 drR þ1
0

re�2r2 dr
¼ 1� �n2: ð29Þ

This relation is in agreement with the trend given by 2D PIC simulation as
shown in Fig. 9b even if it underestimates the absolute values at high �n, when a0 is
low (since we have approximated the Lorentz factor in the ultra-relativistic limit).

In a similar way we can also evaluate the transmittance in 3D with the following
integral:

1�R3D ¼
R ffiffiffiffiffiffiffiffiffi

� log �nð Þ
p
0

r2e�2r2 drR þ1
0

r2e�2r2 dr
¼ erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 log �n
p� �� 4ffiffiffiffi

2π
p �n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi� log �n
p

: ð30Þ

Approximations validity. We discuss the range of validity of the approximations
underlying Eqs. (22)–(25). In order of appearance we assumed the following.

�n>λ2=2w2
0: substituting this inequality into Eq. (22), we get the condition

τ>π2r2c;3DCnc;3Dλ=12
ffiffiffiffiffi
2π

p
c � 1:6λ=c. This corresponds to a FWHM temporal

duration longer than 5 fs which is generally verified for nearly all high intensity
laser systems.

�n<1=4: from this condition we find w0=λ>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24:4 τc=Cnc;3Dr2c λ

3

q
. Fixing the

FWHM temporal duration to 28.5 fs, the latter inequality reads as
w0>3:5λ ¼ 2:8 μm, which is often the case for high intensity laser systems. Note
that the inequality weakly depends on the temporal duration of the pulse, because
of the cubic root.

3ϖ�n1=2 � 4ϖ=ρ: by substituting Eq. (22) into the inequality, we obtain that
τ � 33=2Cnc;3Dr

2
c λ=2

5=2π3=2c; we find τ � 0:8 λ=c which is implied by the first
condition.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The codes generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Fig. 9 Calculation of the reflectance R. a shows the level plot of the amplitude gaussian in normalized units ξ ¼ t=τ and χ ¼ y=w0. The dashed black line
marks a general threshold � log �n obtained in Eq. (28); the dashed part of the plot represents the tails of the pulse which are reflected by the overcritical
plasma. b represents the reflectance as obtained from Eq. (29) (2D, full line) and Eq. (30) (3D, dashed line); to be compared to 2D/3D particle-in-cell
(PIC) simulation data (points).
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