

High intensity laser interaction with nanostructured targets:

a possible route for enhanced laser-driven ion sources

Luca Fedeli

Ningbo, 24/10/2018

The ENSURE group at Politecnico di Milano

Matteo Passoni Associate professor erc ERC-2014-CoG No.647554 ENSURE

ERC-PoC INTER

Collaborations with:

We are interested in:

- Laser-driven sources
- Materials and nuclear science applications of laser-driven sources
- Advanced targetry

High intensity laser interaction with nanostructured targets:

a possible route for enhanced laser-driven ion sources

Enhanced laserdriven ion acceleration

Near-critical plasmas are of great interest for a number of applications

- Laboratory astrophysics
- Enhanced ion acceleration
- γ-ray sources
- Inertial confinement fusion
- Electron acceleration
- High-order harmonic generation
- [...]

For a Ti:Sapphire laser and A/Z~2, **near-critical** density means a **very low mass density**

$$\rho_c(\lambda) = \frac{1.87}{\lambda^2 [\mu m]} \left(\frac{A}{Z}\right) \frac{mg}{cm^3} \Rightarrow \rho_c(0.8\,\mu m) \approx 6\,\frac{mg}{cm^3}$$

For a Ti:Sapphire laser and A/Z~2, **near-critical** density means a **very low mass density**

$$\rho_c(\lambda) = \frac{1.87}{\lambda^2 [\mu m]} \left(\frac{A}{Z}\right) \frac{mg}{cm^3} \Rightarrow \rho_c(0.8\,\mu m) \approx 6\,\frac{mg}{cm^3}$$

For a Ti:Sapphire laser and A/Z~2, **near-critical** density means a **very low mass density**

$$\rho_c(\lambda) = \frac{1.87}{\lambda^2 [\mu m]} \left(\frac{A}{Z}\right) \frac{mg}{cm^3} \Rightarrow \rho_c(0.8\,\mu m) \approx 6\,\frac{mg}{cm^3}$$

WATER $1000 \text{ mg} / \text{cm}^3$

"Easy" to have under-critical or over-critical plasmas

I.Prencipe et al. High Power Laser Science and Engineering, Vol. 5, e17 (2017)


```
There is a "targetry" gap for
near-critical densities
```


I.Prencipe et al. High Power Laser Science and Engineering, Vol. 5, e17 (2017)

Nanostructured Carbon foams with Pulsed Laser Deposition

A. Zani et al. Carbon. 56: 358-365 (2013)

Very porous structures. Locally at the solid density but with many voids.

A. Zani et al. Carbon. 56: 358-365 (2013)

Nanostructured foams can have a **very low density**

Lowest achievable density ~ 10 mg/cm³

Near-critical density!

$$\rho_c(0.8\,\mu m) \approx 6\,\frac{mg}{cm^3}$$

Great flexibility: deposition on virtually any substrate!

200 nm thin CH substrate

Great flexibility: deposition on virtually any substrate!

200 nm thin CH substrate

Great flexibility: deposition on (virtually) any substrate!

Mag = 95 X 1 mm WD = 6.0 mm EHT = 5.00 kV NEMAS NanoEgineered MAterials and Surfaces Date :28 Oct 2016 Signal A = Inlens Signal A = Inlens Signal A = Inlens					
Date :28 Oct 2016 Signal $A = \ln \log n$	Mag = 95 X	1 mm	WD = 6.0 mm	EHT = 5.00 kV	NEMAS NanoEgineered MAterials and Surfaces
Date .20 Oct 2010 POLITECNICO DI MILANO	Date :28 Oct 2016			Signal A = InLens	POLITECNICO DI MILANO

FREE

Great flexibility: density gradients!

~ 10 mg/cm³

~ 150 mg/cm³

Solid substrate

Near-critical plasma

Foams can be used as near-critical targets

Near-critical plasma

When I consider laser-interaction with a near-critical nanostructured target...

...should I consider the role of the nanostructure?

Particle-In-Cell (PIC) simulations could be very useful!

Nanostructured low-density materials

electron energy (MeV) 2 4 6 We simulated <n_e > ~ 3 n_c a_o = 5, 15, 45 **30 fs FWHM pulse** (no pre-pulse, pre-ionized plasma)

We performed an extensive study of
laser-interaction with these plasmasL.Fedeli et al. Sci. Rep. 8 3834 (2018)L.Fedeli et al. Eur.Phys.J. D, 71: 202 (2017)

We even tested 2 different foam morphologies

L.Fedeli et al. Sci. Rep. 8 3834 (2018)

L.Fedeli et al. Eur.Phys.J. D, 71: 202 (2017)

There are differences in pulse propagation

 $a_0 = 15, < n_e > = 3 n_c$

 $< n_{e} > = 3 n_{c}$ structures lead to higher absorption

Laser $a_0 = 5$ $< n_{e} > = 3 n_{c}$ Higher absorption efficiency into **Ion kinetic** energy

Laser $a_0 = 5$ $< n_{e} > = 3 n_{c}$ Higher absorption efficiency into **Ion kinetic** energy

F

Laser $a_0 = 45$ $< n_e >= 3 n_c$ This scenario is suitable for electron acceleration in the plasma channel

Laser $a_0 = 45$ (C-pol & P-pol) <n_e >= 3 n_e Nanostructure Lowers the temperature of electron energy spectra **DLCCA** foam Uniform

z [٨]

-10

y [λ]

30 -5

y [λ]

Provided that the pulse contrast is sufficiently high, the nanostructure seems to play a role

Enhanced laserdriven ion acceleration

M.Passoni et al Phys. Rev. Accel. Beams 19, 061301 (2016)

I. Prencipe et al Plasma Phys. Control. Fusion 58 034019 (2016)

M Passoni et al 2014 Plasma Phys. Control. Fusion 56 045001 (2014)

A. Sgattoni et al Phys. Rev. E 85, 036405 (2012)

J.H. Bin et al Phys. Rev. Lett. 120, 074801 (2018)

This is due to the higher absorption efficiency

This is due to the higher absorption efficiency

This is due to the higher absorption efficiency

near-critical layer 6 E [MeV] more accelerated ions accelerated at higher energy ions 1 µm-thick µm-thick solid foil solid foil

Conventional TNSA

Enhanced TNSA

2014/2015 PULSER laser 7.4J, 30 fs, ≈5x**10**²⁰ **W/cm**²

2017

DRACO laser

1J, 30 fs, ≈**10**²⁰ W/cm²

2017

DRACO laser

1J, 30 fs, ≈**10**²⁰ W/cm²

We are interested in double-layer targets irradiated at (relatively) low laser intensities (a0 ~ 4)

We are interested in double-layer targets irradiated at (relatively) low laser intensities (a0 ~ 4)

Nanostructures influence Ion energy spectra

H⁺ energy spectra

Nanostructures influence Ion angular distribution (H⁺ with E > 1 MeV)

Why do we care?

Foam-attached targets could allow to reduce size and cost of laser-driven ion accelerators

We are interested in applications

- requiring modest energies (few MeVs)
- without stringent requirements on energy spectra
- requiring modest proton fluxes

Laser-driven PIXE (Proton Induced X-ray Emission)

Passoni et al. Submitted to Scientific Reports (2018)

(a)

Compact laser-driven neutron sources

Conclusions

Low-density nanostructured foams are a promising material

Nanostructure might affect the interaction

Foam-attached targets allow to enhance laser-driven ion acceleration

Thank you for your time! 感謝諸位的時間

https://www.ensure.polimi.it/

Backup slides

"Realistic" modeling based on DLA

Diffusion Limited Aggregation (DLA) A simple and very well studied model to reproduce structures resulting from aggregation phenomena.

Witten&Sander, PRL 47, 1981

Diffusion-Limited Cluster-Cluster Aggregation (DLCCA)

DLCCA model

Top-view

Diffusion-Limited Aggregation (DLA)

Nanoparticles in Brownian motion Cluster assembly by irreversible sticking Cluster deposition on a substrate Nanoparticles in Brownian motion one at a time Irreversible sticking to substrate or to other particle

POLITECNICO MILANO 1863

Cross-section

Zani, A., et al. "Ultra-low density carbon foams produced by pulsed laser deposition." Carbon 56 (2013): 358-365.

How to produce carbon foams

Ion Beam Analysis (IBA)

PIXE relies on an iterative process to reconstruct sample compositions and elemental depth profiles from x-ray yields.

Monochromatic Laser-driven

$$Y_i = N_p \frac{\Delta \Omega}{4\pi} \varepsilon_i \frac{N_{av}}{M_i} W_i \int_{E_0}^{E_f} \sigma_i(E) \omega_i e^{-\mu_i \int_{E_0}^{E'} \frac{dE'}{S(E')} \frac{\cos \theta}{\cos \phi}} \frac{dE}{S(E)} \Rightarrow$$

$$Y_{i} = \frac{\Delta\Omega}{4\pi} \varepsilon_{i} \frac{N_{av}}{M_{i}} W_{i} \int_{E_{p,min}}^{E_{p,max}} f_{p}(E_{p}) \int_{E_{p}}^{0} \sigma_{i}(E) \omega_{i} e^{-\mu_{i} \int_{E_{p}}^{E'} \frac{dE'}{S(E')} \frac{\cos\theta}{\cos\phi}} \frac{dE}{S(E)} dE_{p}$$

Yi: x-ray yield. $\Delta\Omega$: subtended solid angle, ε i: detector efficiency, Nav: Avogadro's number, Ef: final proton energy, σ i(E): ionization cross section, ω i: fluorescence yield, S(E): proton stopping power, σ i: X-ray attenuation coefficient, θ : proton impact angle, ϕ : X-ray emission angle, fp(Ep): proton energy distribution (Ep,min and Ep,max : lower and upper cut-offs)

-

T ~ 5 fs

T ~ 107 fs

T ~ 213 fs

- 2D simulations with $a_0 = 0.05$ impinging onto a nanowire target
- T ~ 320 fs

T ~ 427 fs

T ~ 533 fs

- 2D simulations with $a_0 = 0.05$ impinging onto a nanowire target
- T ~ 640 fs

2D simulations with $a_0 = 0.05$ impinging onto a nanowire target

T ~ 746 fs

2D simulations with $a_0 = 0.05$ impinging onto a nanowire target

T ~ 853 fs

2D simulations With a0 = 0.05 impinging onto a nanowire target

T ~ 960 fs

POLITECNICO MILANO 1863