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Abstract
Plasma sheaths characterized by electrons with relativistic energies and far from thermodynamic
equilibrium are governed by a rich and largely unexplored physics. A reliable kinetic description of
relativistic non-equilibrium plasma sheaths—besides its interest from a fundamental point of
view—is crucial to many application, from controlled nuclear fusion to laser-driven particle
acceleration. Sheath models proposed in the literature adopt either relativistic equilibrium
distribution functions or non-relativistic non-equilibrium distribution functions, making it
impossible to properly capture the physics involved when both relativistic and non-equilibrium
effects are important. Here we tackle this issue by solving the electrostatic Vlasov–Poisson
equations with a new class of fully-relativistic distribution functions that can describe
non-equilibrium features via a real scalar parameter. After having discussed the general properties
of the distribution functions and the resulting plasma sheath model, we establish an approach to
investigate the effect of non-equilibrium solely. Then, we apply our approach to describe
laser–plasma ion acceleration in the target normal sheath acceleration scheme. Results show how
different degrees of non-equilibrium lead to the formation of sheaths with significantly different
features, thereby having a relevant impact on the ion acceleration process. We believe that this
approach can offer a deeper understanding of relativistic plasma sheaths, opening new perspectives
in view of their applications.

1. Introduction

Plasmas out of thermodynamic equilibrium conditions2 are ubiquitous as much in nature as in the
laboratory and have been the focus of countless works since the very beginning of plasma physics [1–4].
Their great appeal still endures nowadays in numerous research fields, such as astrophysics [5],
thermonuclear fusion [6, 7], low-temperature plasmas [8], plasma propulsion [9], accelerator physics [10]
and laser–plasma interaction [11, 12]. An important problem common to all these fields and significant for
application purposes is that of plasma sheaths [13, 14]: whenever a plasma gets in contact with another
physical system (e.g. a solid material, vacuum or another plasma with different macroscopic features), a
charged layer—called sheath—sets up across their interface. That is because the plasma electrons usually
have a much higher thermal velocity than the plasma ions (the thermal velocity is vt ∼ T1/2m−1/2, where T
and m are the species temperature and mass, respectively), so that the electrons will likely charge the
adjacent material and leave positively charged the plasma where they come from. In this scenario, whether
the plasma electrons are in thermal equilibrium or not may dramatically change the physics near the
boundary interface [15], namely the density and fields profiles and their evolution in time.

Non-equilibrium plasma sheaths naturally arise in superintense laser–solid interactions, which are of
great interest both for fundamental physics research [16, 17] and for the development of promising

2 In a kinetic description, an equilibrium plasma state is any stationary state that cancels out the collision integral in the transport
equation (or, equivalently, that makes the entropy production rate vanish) and is solution of the transport equation itself. Any other
state—even if stationary—is of non-equilibrium.
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applications [18, 19]. In a common configuration, a high-intensity (I � 1018 W cm−2), ultra-short
(∼1–103 fs) laser pulse is irradiated onto a thin (�100 μm), solid target. During the interaction, the pulse
heats a portion of the target electrons up to relativistic energies through many absorption processes [20].
We will refer to these electrons as hot electrons, as opposed to the cold electrons which do not directly partake
in the interaction. In this situation, the hot electrons have a higher mobility than all the other species (i.e.
ions and cold electrons) and may be able to travel through and separate from the bulk target, thus
generating a sheath at the solid–vacuum interface. In this way, the interaction results in the conversion of
the transverse, oscillatory electric field carried by the laser pulse into a very intense longitudinal,
quasi-stationary, sheath electric field at the solid–vacuum interface. In this kind of scenario, the sheath field
builds up in a relativistic, collisionless and non-equilibrium framework. Certainly, relativistic effects are
crucial at such high laser intensities, as it is well-known from both simulations and experimental data [21].
This is by no means surprising since an electron in a laser field of intensity ∼ 1018 W cm−2 can be brought
to relativistic energies within a single optical cycle. Moreover, collisions can be fairly neglected provided that
the plasma has a low-enough density ne and a high-enough temperature Te, so that the characteristic time

between two electron collisions ν−1
e ∼ n−1

e T3/2
e is much shorter than the interaction timescale (∼laser

duration). This is definitely the case in most experimental situations, even more so as the laser intensity
increases so that relativistic effects become more and more important. Besides being relativistic and
collisionless, the hot electron generation is a highly nonlinear process due to many overlapping effects
driven by the strong laser field. Being the plasma collisionless and the dynamics of hot electron generation
ultra-fast (∼ 10 − 100 fs), then the hot electron population does not have enough time to thermalize.
Hence, in that case, the assumption of thermal equilibrium is unlikely to be accurate, as is also suggested by
other works [22, 23].

Within the above-mentioned context, a case in point is that of laser–solid interaction for ion
acceleration, especially under the scheme known as Target Normal Sheath Acceleration (TNSA) [24]. Here,
the sheath field is exploited to drive the acceleration of the target ions, especially the light contaminants
(protons and carbon ions) located on the rear surface as impurities. TNSA has been massively investigated
both theoretically and experimentally in the past [25–27]. One way to describe the TNSA process relies
on a quasi-static sheath model that can take into account kinetic effects in a self-consistent and
relativistically-correct way [28]. Nevertheless, in some cases the theory is developed in the non-relativistic
[29–31] or ultra-relativistic limit [32] and, what is more, in most cases the hot electron population is
considered to be in thermal equilibrium [28, 30, 32, 33].

In this paper we address the issue of assessing the role and extent of non-equilibrium effects in a
relativistic, self-consistent sheath model and thereafter in the consequential TNSA process. We abandon the
hypothesis of thermodynamic equilibrium of the hot electron population by describing it via a
non-equilibrium distribution function f that—besides satisfying the relativistic Vlasov equation in presence
of a self-consistent electromagnetic potential—depends on an additional parameter α which measures
the ‘degree of non-equilibrium’: the larger α is, the further away from a Jüttner distribution (e.g. in terms
of L2 distance) f is. This modeling approach allows one to directly explore the role of non-equilibrium by
letting α vary, something that is not easily done by means of conventional numerical simulations, e.g
Particle-In-Cell (PIC) simulations [34]. Among possible reasonable choices for f, we choose a relativistic
generalization of the Cairns distribution function [35], also with the goal of extending a previous
non-relativistic treatment proposed to model the effects of energetic electrons on TNSA [31]. In section 2
we introduce all the ingredients needed to define our approach and we show that the proposed
Cairns-like distribution function fully satisfies the principles of special relativity by writing the main
expressions in a manifestly Lorentz-covariant form. Once the distribution function is defined, in section 3
we make use of it in a stationary sheath model and we define a strategy to assess the effects of
non-equilibrium. Lastly, in section 4 we show that the Cairns-like function is a reasonable choice to
describe the hot electron population generated by super-intense, ultra-short laser–plasma interaction, and
we apply these results to TNSA modeling in order to obtain the main quantities of interest, e.g. the
accelerating field and the ion maximum energy.

2. Non-equilibrium, relativistic distribution function

Quantitatively assessing the importance of non-equilibrium of the relativistic hot electron population
requires to make a specific choice for its distribution function. We define a scalar distribution function
f = fα(xμ, pμ), which depends upon the time-space coordinates xμ = (ct, x), the energy-momentum
four-vector pμ = (p0, p) and has an additional dependence on a parameter α � 0, such that
limα→0 fα(xμ, pμ) = feq(xμ, pμ). Here feq is the equilibrium distribution function in presence of an
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electromagnetic four-potential Aμ = (φ, A) [36–38], namely a generalization of the Jüttner distribution:

feq(xμ, pμ) =
ζn0

4πm3
ec3K2(ζ)

exp

[
−Uμ

T

(
pμ −

e

c
Aμ

)]
, (1)

with me the electron mass, c the speed of light in vacuum, n0 the unperturbed electron number density (i.e.
if Aμ = 0), Kn the modified Bessel function of the second kind of order n (here n = 2), T the temperature,
ζ = mec2/T, e the elementary charge and Uμ = γ(u)(c, u) the hydrodynamic four-velocity of the plasma (u
is the three-dimensional hydrodynamic velocity and γ(u) its Lorentz factor).

Note that, following the argument developed by Hakim [36, 38], obtaining (1) as the explicit solution of
the collisionless Boltzmann equation in presence of an electromagnetic field that also makes the collisional
integral disappear requires two additional assumptions. First, that the (timelike) four-vector Uμ does
not depend on the space-time variables (and so u is constant in both space and time). Second, that Aμ is
constant along the direction identified by Uμ. The latter hypothesis implies that Uμ∂Aν/∂xμ = 0, which
means that the electromagnetic scalar and vector potentials are time-independent in the frame of
reference where Uμ = (c, 0), known as the Lorentz rest frame. Here, we keep the same hypotheses even if we
are looking for a non-equilibrium distribution. Therefore, we will find a non-equilibrium distribution
function that is time-independent in the Lorentz rest frame as well. Additionally, fα(xμ, pμ) together with Aμ

must solve the Vlasov–Maxwell system, given by (in Gauss units):

where we introduced the electromagnetic tensor Fμν = ∂Aν

∂xμ
− ∂Aμ

∂xν
and the current four-vector Jμ = (cρ, J).

We further assume that any plasma population other than the one described by f (in our case the hot
electrons) is part of a cold background, so that the dependence of Jμ upon f can be expressed as follows:

ρ = −e

∫
Ω

f d3p +
∑

i

qini (4)

J = −e

∫
Ω

p

meγ(p)
f d3p, (5)

where Ω ⊆ R
3 is a suitable integration domain and γ(p) =

√
1 + |p|2/(mec)2 is the electron Lorentz factor

and i is an index that runs through all the cold populations with charges qi and number
densities ni.

In order to readily satisfy all these requirements, we pick a distribution function that is a function of the
variables xμ, pμ only through a constant of motion I, i.e. a quantity such that dI/dτ = 0, where τ is
the proper time. In our case, an integral of the motion is Uμ

(
pμ − e

c Aμ

)
[36], that written in the

Lorentz rest frame reduces to the three-dimensional single particle Hamiltonian
H(x, p) = mec2γ(p) − eφ(x).

At this point, we need to adopt an explicit form of the distribution function. There are several
reasonable options, such as the κ or Vasyliunas distribution function [39–42], the Tsallis distribution
function [43–45], a super-Gaussian [46, 47], a Maxwellian with a supra-thermal component [48] or a
Jüttner distribution with a superimposed shift in the momentum [49]. Here, we choose a Cairns-like
distribution function. The Cairns distribution function was first introduced to explain soliton structures
observed in cold space plasmas [35] and then employed in a non-relativistic TNSA model [31]. We
extend the Cairns distribution function [35] to the relativistic regime, which, in a manifestly covariant
form, reads:

fα(xμ, pμ) =
1

N

{
1 + α

[
Uμ

T

(
pμ −

e

c
Aμ

)
− mec2

T

]2
}

exp

[
−Uμ

T

(
pμ −

e

c
Aμ

)]
, (6)

where N is the normalization factor:

N =
4πm3

ec3

n0

{
K2(ζ)

ζ
+

1

4
ζ2α

[
K0(ζ) − 3

2
K1(ζ) +

5

4
K3(ζ) − K4(ζ) +

1

4
K5(ζ)

]}
. (7)

The term mec2/T in (6) is added to let fα reduce to the Cairns distribution when taking the non-relativistic
limit. The main reason behind the choice of the Cairns distribution lies in its simplicity.. First, fα is built as
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Figure 1. Relativistic Cairns distribution function: (a) in the unperturbed case (φ = 0), for different values of the
non-equilibrium parameter α; (b) in presence of different spatially-constant electrostatic potentials φ, for α = 1.

a sum of two contributions: feq and a ‘perturbation’ term proportional to α. This allows us to interpret α as
a knob that moves the distribution function from equilibrium (α = 0) to a higher degree of
non-equilibrium (α→∞). Second, when plugging fα into the sheath model, computations in the
non-relativistic [31] and ultra-relativistic limits can be partially carried out analytically. In addition, as we
will detail in section 4, fα is consistent with 3D PIC simulations of TNSA.

Having written the chosen non-equilibrium distribution function in a manifestly covariant fashion, the
hot electrons are automatically described in a relativistically-correct way. A corresponding
three-dimensional expression can be retrieved by fixing the frame of reference as the Lorentz rest frame,
which leads to:

fα(x, p) =
1

N

{
1 + α

[
mec2(γ(p) − 1) − eφ(x)

T

]2
}

exp

[
−mec2γ(p) + eφ(x)

T

]
. (8)

Note that fα(x, p) in (8) only depends on (x, p) through the above-mentioned Hamiltonian H(x, p), thus
guaranteeing that it satisfies df/dt = 0. In the Lorentz rest frame, the system of equations (2) and (3)
reduces to the familiar electrostatic Vlasov–Poisson system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

p

meγ
· ∂f

∂x
+ e

dφ

dx
· ∂f

∂p
= 0

−Δφ = 4π

[
−e

∫
Ω

f d3p +
∑

i

qini

]
.

(9)

The expression (8) can be simplified for instance by assuming that all the quantities depend on only one
space coordinate, say x, and only one momentum coordinate, say px. Under these additional hypotheses, the
distribution function (8) can be written in the Lorentz rest frame as:

fα(x, px) =
1

N

{
1 + α

[
mec2(γ(px) − 1) − eφ(x)

T

]2
}

exp

[
−mec2γ(px) + eφ(x)

T

]
, (10)

where the normalization factor now reads

N =
2mec

n0

{
K1(ζ) +

αζ2

4
[−4K0(ζ) + 7K1(ζ) − K2(ζ) + K3(ζ)]

}
. (11)

Figure 1 shows the dependence of the distribution defined in equation (8) upon the absolute value of
the momentum |p|. On the left, figure 1(a) shows how f changes for varying α, when the electrostatic
potential vanishes. As α increases, two symmetric supra-thermal populations arise, while the cold portion
of electrons (that around |p| = 0) is reduced. The value α = 1 separates two regimes: one with no
maximum points other than zero (α < 1) and one with two additional maximum points (α > 1). At the
(pointwise) limit α→∞, for which f is well-defined, f is that of a two counter-propagating electron
bunches with most probable energy given by 2

√
1 + ζ/ζmec2. On the right, figure 1(b) shows again f

defined in equation (8) as a function of |p|, but having fixed α = 1 and for different values of the potential
φ. For increasing φ, f consequently increases everywhere. This is because the normalization factor N
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defined in equation (7) cannot depend on φ, or otherwise f would not satisfy Vlasov equation. This implies
that f, as written in equations (8) and (10), is normalized to n0 only for φ ≡ 0.

Lastly, it is interesting to compute the number density n and kinetic energy density ekin of the hot
electron populations described via (10):

n(x) = n0

{
1 +

αζ2

N
[
Aϕ2 + Bϕ

]}
exp[ζϕ]

A = 2K1(ζ)mec

B = [−2K0(ζ) + 4K1(ζ) − 2K2(ζ)]mec

ekin(x) =
n0mec2

N
{

C + αζ2
[
Cϕ2 + Dϕ+ E

]}
exp[ζϕ]

C = [K0(ζ) − 2K1(ζ) + K2(ζ)]mec

D = [4K0(ζ) − 7K1(ζ) + 4K2(ζ) − K3(ζ)]mec

E =
1

4
[15K0(ζ) − 26K1(ζ) + 16K2(ζ) − 6K3(ζ) + K4(ζ)] mec,

(12)

where ϕ = eφ/mec2. Both n and ekin are functions of the space coordinate x through the potential φ = φ(x)
and both depend on the non-equilibrium parameter α. By an additional integration in space, once φ(x) is
known, one can compute the total number of electrons Ntot and their total energy Etot, which will again
depend on α. This implies that two distribution functions of the form (10) that only differ by their α value,
will describe two populations with not only different ‘non-equilibrium parameter’, but also different
total electron number and total electron energy. It is clear that a comparison between such populations is
not fair if one intends to investigate the importance of non-equilibrium only. Therefore, in order to isolate
non-equilibrium effects, one has to find a way to fix Ntot and Etot even when varying α. As a consequence,
some other quantities (e.g. T, n0) will have to properly vary together with α. We devised a specific
procedure to accomplish this goal in the framework of the sheath model for TNSA. We describe the details
of our approach in the next section.

3. Non-equilibrium in a plasma sheath model

We mean to determine the plasma sheath generated by a relativistic hot electron population described by
the non-equilibrium distribution function of the form (10). Here, we detail the rationale of our modeling
approach, going through the main hypotheses and equations.

We consider a one-dimensional plasma consisting of a hot electron population and a cold background.
We assume that the hot electron population has already been generated through other previous processes
(e.g. laser–plasma interaction) and has reached a stationary non-equilibrium state described by (10). The
non-equilibrium feature is attributed to the prior phenomena and to a low collisionality of the relativistic
plasma. Under these assumptions, the physics is governed by the one-dimensional version of the
Poisson–Vlasov system (9). We describe the build-up of a stationary (in the rest frame), one-dimensional
sheath field at the plasma–vacuum interface using an electrostatic and self-consistent approach. Not all the
electrons contribute to the sheath formation, rather only those electrons whose kinetic energy does not
exceed the potential energy that they experience (we call them trapped electrons). To do so, we adopt the
sheath model described in details in references [28, 30, 32].

From now on, we will use dimensionless quantities in the following units: momenta in mec, energies and
temperatures in mec2, densities in n0, lengths in (Ren0)−1/2 (Re = e2/mec2 is the classical electron radius)
and f in n0(mec)−1. We use the potential energy, rather than the potential itself and define the dimensionless
quantity ϕ = eφ/(mec2). In addition, we use a gauge such that ϕ vanishes at +∞. We remark that these
dimensional units, even if seldom adopted, are quite convenient because they do not hide any
dependence on the temperature, as it would happen if distances were normalized with respect to the Debye
length.

The main equation of the model is the Poisson equation written piecewise inside (x � 0) and outside
(x � 0) the plasma: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2ϕ

dx2
= 4π[ntrap(x) − ntrap(x∗)] x � 0

d2ϕ

dx2
= 4πntrap(x) x � 0,

(13)
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Figure 2. Sketch showing the typical form of the right-hand-side of the Poisson system (13), i.e. the hot electron density ntrap(x)
(green) and the background density ntrap(x∗) (red), together with the resulting typical solution ϕ(x) (blue). Other useful
quantities needed to frame the problem are also shown (ϕ∗ , x̃ and the plasma thickness d).

where ntrap(x) is the number density of the trapped electrons and x∗ < 0 is a point well-inside the plasma
where the charge density vanishes by construction, so that local neutrality holds. ntrap(x) is given by:

ntrap(x) =

∫
Ω

fα(x, p) dp, Ω = {p : γ(p) − 1 < ϕ(x)} , (14)

where f = fα(x, p) is the Cairns-like distribution (10) that was discussed in section 2. We report it here in
dimensionless units for convenience (we now write p instead of px):

fα(x, p) =
1

N
{

1 + αζ2
[
(γ(p) − 1) − ϕ(x)

]2
}

exp
{
−ζ

[
γ(p) − ϕ(x)

]}
,

N = 2

{
K1(ζ) +

αζ2

4
[−4K0(ζ) + 7K1(ζ) − 4K2(ζ) + K3(ζ)]

}
.

(15)

The following ‘implicit’ boundary conditions are taken. It is assumed that there exist two points x∗ < 0 and
x̃ > 0 such that: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dϕ

dx
(x∗) = 0 ∧ ϕ(x∗) = ϕ∗

dϕ

dx
(x̃) = 0 ∧ ϕ(x̃) = 0,

(16)

where the value ϕ∗ is a free parameter of the model. Additionally, the continuity of the electric field and of
the potential is imposed at the solid–vacuum interface, x = 0, where ϕ(0) = ϕ0:

∫ ϕ0

0
ntrap(ϕ) dϕ =

∫ ϕ0

ϕ∗
[ntrap(ϕ) − ntrap(ϕ∗)]dϕ, (17)

which implies that there is no charge accumulation on the plasma–vacuum interface. Equation (17) is a
relationship of the form ϕ0 = ϕ0(ϕ∗), so that the value of the potential at the interface can be found (as a
function of ϕ∗) without having to solve the whole problem. Indeed, this relation represents the actual
boundary condition that is used to numerically solve both equations of the system (13) after one spatial
integration. To this regard, we point out that the values of the two points x∗ and x̃ are not determined a
priori with the boundary conditions (16). Instead, once the relation ϕ0 = ϕ0(ϕ∗) has been fixed, they can
be found by integrating twice equations (13) and expanding up to the first order around ϕ = ϕ∗ inside the
plasma and ϕ = 0 outside the plasma. It results that x∗ → −∞, so that the plasma region, in this model, is
formally semi-infinite, while x̃ < +∞, so that the sheath field has a finite extension.

6
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Figure 3. Total number Ntot (blue) and total energy Etot (red) of different hot electron populations. (a) Hot electrons are
described by (10) with varying α, while the other parameters are fixed to ζ = 2.1, ϕ∗ = 22.5, n0 = 2 × 1019 cm−3, d = 5 μm.
Ntot and Etot, computed a posteriori the model solution via equations (18), are shown as a function of α: varying only α can lead
to fluctuations of Ntot and Etot up to 1 order of magnitude. (b) Hot electrons are at equilibrium (α = 0), with
n0 = 2 × 1019 cm−3, d = 5 μm and varying ζϕ∗. The good agreement between Ntot and Etot obtained with formulas (19) (solid
lines) and their approximations (21) (dashed lines) is shown.

Equations (13)–(17) mathematically formalize the physical sheath model, which has four degrees of
freedom: ζ , n0 (hidden in the units), ϕ∗ and α. Figure 2 shows a sketch of the typical solution of the model
together with the main quantities used to frame the whole problem.

Now, we wish to understand to what extent and how the main quantities are affected by the Cairns-like
non-equilibrium. To tackle this issue, the easiest way would be to fix the parameters ζ , n0 and ϕ∗, hence to
solve the model for different values of α. However, this procedure does not isolate the effect of
non-equilibrium alone because varying α strongly affects the total hot electron number Ntot and energy
Etot. Indeed, figure 3(a) shows Ntot (blue) and Etot (red) as functions of α for fixed ζ, n0 and ϕ∗.
Switching the non-equilibrium on (α � 1) makes them rapidly increase, while they reach an asymptotic
value for α 
 1. Overall, Ntot and Etot can vary by an order of magnitude. In light of this trend,
we rather fix the total number Ntot and the total energy Etot of the hot electron population,
given by:

Ntot =

∫
Σ

n(x)dx =

∫
Σ

{
1 +

αζ2

N
[
Aϕ2 + Bϕ

]}
exp [ζϕ] dx,

Etot ≈ Ekin,tot =

∫
Σ

ekin(x) dx =
1

N

∫
Σ

{
C + αζ2

[
Cϕ2 + Dϕ+ E

]}
exp [ζϕ] dx,

(18)

where Σ ⊆ R and A, B, C, D and E are now given by:

A = 2K1(ζ)

B = −2K0(ζ) + 4K1(ζ) − 2K2(ζ)

C = K0(ζ) − 2K1(ζ) + K2(ζ)

D = 4K0(ζ) − 7K1(ζ) + 4K2(ζ) − K3(ζ)

E =
1

4
[15K0(ζ) − 26K1(ζ) + 16K2(ζ) − 6K3(ζ) + K4(ζ)]

Because the model is one-dimensional, Ntot and Etot are actually the total number and total energy per
unit surface area (in units of #e/

√
Re/n0 and mec2/

√
Re/n0, respectively). Note that we approximated the

total electron energy with its kinetic component, assuming that the plasma is ideal. The simplest choice
for the integration domain is Σ = [−xd, x̃], where xd > 0 is representative of the size of the plasma. Hence,
we fix the physical size of the plasma d once and for all, as if we are studying one only plasma configuration,
so that xd = d/(Ren0)−1/2. The only requirement on xd is that it should be large-enough so that the
potential approaches its boundary value ϕ∗.
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We choose to keep Ntot and Etot constant, equal to their value at equilibrium (α = 0), given by:

Ntot =

∫
Σ

exp [ζϕ] dx, Etot ≈ Ekin,tot =

[
ζ−1 +

K0(ζ)

K1(ζ)

]∫
Σ

exp [ζϕ] dx. (19)

These expressions of Ntot and Etot can be approximated by considering the following observations. First, the
typical potential profile, solution of the model, is approximately constant inside the target, where it takes
its maximum value, ϕ∗. Second, the potential monotonically (≈exponentially) drops to zero outside the
target. If it is also possible to assume that ζϕ∗ 
 1, then we can approximate the integrals in (19) using the
following: ∫ x̃

−xd

exp[ζϕ]dx ≈
∫ 0

−xd

exp[ζϕ]dx ≈ xd exp[ζϕ∗], (20)

which yields

Ntot ≈ xd exp[ζϕ∗], Etot ≈
[
ζ−1 +

K0(ζ)

K1(ζ)

]
xd exp[ζϕ∗]. (21)

These steps let us write Ntot and Etot as functions of the free parameters only, at least for the equilibrium
case. Note that ζϕ∗ 
 1 is a very reasonable hypothesis: indeed ϕ∗ and ζ−1 represent the maximum and
average trapped electron energy, respectively. Figure 3(b) shows a very good agreement between formulas
(19) (solid lines) and their approximations (21) (dashed lines).

In order to keep the values of Ntot and Etot constant, equal to their values at equilibrium for every α, we
adjust the other parameters (ζ, n0 and ϕ∗) conveniently for each α. We illustrate the technical details of our
approach in appendix A.

Now that we have identified a strategy to assess the effects of non-equilibrium, we apply it to the case of
laser–ion acceleration driven by the TNSA process.

4. Non-equilibrium in a laser-driven plasma sheath

We apply the approach discussed so far to describe the sheath field that drives the ion acceleration process
in a TNSA scenario with the goal to assess the magnitude of non-equilibrium effects. Now, before going
into the details of our results, we discuss the physical meaning of the main hypotheses presented in
section 3 within the context of TNSA. First of all, since the very beginning we have been using a static
picture, meaning that the electron distribution function in the Lorentz rest frame does not depend on time.
This implies that our results will describe the physics on a time frame for which the hot electron
population has already been generated, while the ions are still cold and immobile. Second, we assume that f
depends on only one space coordinate, x, which is the direction normal to the target. This is reasonable if
the laser spot size is large enough (
 laser wavelength), so that a one-dimensional (in space) picture can
apply. As a consequence, the sheath field always arises along the target–normal direction—even in case of
non-normal incidence—as it is well-understood from the features of the accelerated ions [50, 51]. The
description developed in previous sections is also one-dimensional in the momentum space,
meaning that the distribution function depends on only one momentum coordinate. Under the TNSA
scenario, it is reasonable to assume such remaining momentum component to be the longitudinal one, px.
This approximation is the more reliable as the electron Lorentz factor γ =

√
1 + |p|2 is better

approximated with its longitudinal part γ ≈
√

1 + p2
x. In order to check the consistency of these hypotheses

in a TNSA scenario, we performed a 3D PIC simulation representative of a standard experimental
configuration. This also allows us to highlight those physical features that can be well described by the
stationary 1D sheath model, even if the actual physics is time-dependent and 3D.

4.1. Comparison with a 3D particle-in-cell simulation
We performed a 3D PIC simulation where a 400 nm-thick solid target is irradiated at normal incidence by a
0.8 μm wavelength, 30 fs, P-polarized laser with a0 = 4. The relevant details of the simulation are reported
in appendix B. In figure 4(a) we show the time evolution of the kinetic energy associated to the electron
(green) and ion (purple) populations expressed as a fraction of the initial laser energy (i.e. the total energy
of the system). The laser energy is quickly absorbed by the electrons within a few tens of fs (time t = 0
being the beginning of the interaction), until the absorbed energy reaches a peak value (� 10%)
while the ions are still at rest. Then, the electrons transfer part of the absorbed energy to both bulk and
contaminant ions, of which the latter start to be accelerated under the action of the sheath field. This
confirms that the early stages (t < 100 fs) of the acceleration process can be satisfactorily described by
means of a static TNSA model. We have also collected the electron distribution function at t = 53 fs

8
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Figure 4. Data from an illustrative 3D PIC simulation validating the hypotheses of the relativistic non-equilibrium plasma
sheath model. (a) Time evolution of the conversion efficiency of laser energy into electron (green) and ion (purple) kinetic
energy. (b) Electron momentum distribution in the (py , pz) plane. (c) Electron momentum distribution in px (black) and p⊥
(blue). (d) Longitudinal momentum distribution of the electrons (black dots) fitted with different distribution functions (color
lines). (e) and (f) Longitudinal electric field and electrostatic potential, respectively, from PIC results (green) and model solution
(magenta). More details are given in appendix B.

(marked by a black vertical line in figure 4(a)) at the plasma–vacuum interface (i.e. at the target rear
surface).

Figure 4(b) shows the distribution function on the transverse momentum plane (py, pz). It can be
appreciated that this distribution is symmetric, only depending on the magnitude of the transverse

momentum p⊥ =
√

p2
y + p2

z , even in the case of a P-polarized laser. Hence, we compare the distributions

along the px (black) and p⊥ (blue) axes in figure 4(c). While for relatively cold electrons (p⊥, px < 1mec) the
distributions are similar, once px, p⊥ exceed

√
3mec (to which corresponds a kinetic energy of mec2) the

distribution is dominated by the longitudinal component. This implies that, for hot electrons, the
average γ =

√
1 + |p|2 ≈

√
1 + p2

x, according to the model hypotheses. Moreover, it can be seen that a
clear non-equilibrium feature only appears in the longitudinal momentum distribution. By looking
at its shape, three regions can be recognized: a cold part (px <

√
3mec) with a steep decreasing
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slope, a hot part (
√

3mec < px < 3mec) where the slope becomes milder, and a bump
(3mec < px < 6mec).

The distribution in longitudinal momentum is reprinted with black dots in figure 4(d). The cold
electron population can be satisfactorily fitted with a Jüttner distribution (blue line, Tcold ≈ 40 keV) [29].
On the other hand, the distribution cannot be described in terms of a Jüttner function (which is
monotonically decreasing in px) at higher energies. This clearly points to some non-equilibrium process.
Indeed, we fitted the PIC data for the hot electrons (p �

√
3mec) with either a Jüttner distribution (red line,

Thot ≈ 0.2 MeV) and a relativistic Cairns-like distribution (orange line, TCairns ≈ 0.5 MeV, φfit ≈ 1.1 MV,
α ≈ 4.6). Both functions are in good agreement with the data in the range 1.5mec < px < 3mec.
However, only the Cairns-like distribution is able to reproduce the PIC data for px > 3mec. A satisfactory fit
over the whole spectrum is given by the sum of the cold Jüttner and the Cairns-like distributions (purple
dashed line), indicating that this can be a suitable choice to account for non-equilibrium effects in
laser-generated relativistic plasma sheaths.

In order to further assess whether the relativistic non-equilibrium sheath model can actually describe a
TNSA scenario, we solved it using the Cairns-like distribution function obtained from the fit shown in
figure 4(d) (α = 4.6 and T = 0.5 MeV). The fitted distribution function is evaluated at the target–vacuum
interface, so that the fitting value φfit is an estimation of φ(0) = φ0. Hence, we fixed the parameter φ∗ in
such a way that φ0 ≈ φfit, while n0 is left as a free parameter. The resulting electric field and potential
obtained with n0 = 5 × 1020 cm−3 are shown in figures 4(e) and (f), respectively. By comparing the
green (PIC) and magenta (model) curves it can be appreciated how the model nicely reproduces the
simulation results.

4.2. Consequences on target normal sheath acceleration
After having assessed the soundness of the relativistic sheath model based on the Cairns-like distribution to
describe TNSA, we investigate the role of non-equilibrium on the TNSA process itself.

Here, we follow the idea of estimating the maximum ion energy through the potential drop at the
target–vacuum interface by invoking total energy conservation in an electrostatic picture. Assuming that the
ions accelerated by the sheath field are test particles located on the surface x = 0, then the maximum energy
that they will acquire is given by Zϕ0mec2 [32]. Now, ϕ0 can be written in terms of the parameters ζ , ϕ∗ and
α by expanding equation (17), as was done in reference [28] for the equilibrium case:

ϕ0 = ϕ∗ − 1

ζ
+

α

I1(ϕ∗; ζ,α)
[I2(ϕ∗; ζ) − I3(ϕ∗; ζ)] + (1 + 2α)

e−ζ(ϕ∗+1)

ζ

β(ϕ∗)

I1(ϕ∗; ζ,α)
(22)

where

β(ϕ) =
√

(1 + ϕ)2 − 1,

I1(ϕ; ζ,α) =

∫ β(ϕ)

0

[
1 + αζ2

(
γ(p) − 1 − ϕ

)]2
exp

[
−ζγ(p)

]
dp,

I2(ϕ; ζ) =

∫ β(ϕ)

0
2
[
ϕ+ 1 − γ(p)

]
exp

[
−ζγ(p)

]
dp,

I3(ϕ; ζ) =

∫ β(ϕ)

0

2

ζ
exp

[
−ζγ(p)

]
dp.

In equation (22) the (normalized) maximum ion energy is written as the sum of two contributions:
ϕ∗ − 1/ζ, which does not depend on α, and a combination of other terms that do depend on α. Among the
latter, the term proportional to (1 + 2α) would vanish if all hot electrons were trapped (note that, at
equilibrium, if all electrons were trapped, i.e. if ζϕ∗ 
 1, then ϕ0 → ϕ∗ − 1/ζ). On the other hand, the
term proportional to α couples the effects of non-equilibrium and trapped electrons, since it would survive
even if all electrons were trapped.

Now, to numerically solve the model, we need to set the free parameters to values that are relevant in the
context of TNSA. To accomplish this goal, it is of particular interest to relate the formal mathematical
model to a realistic experimental configuration, suitably described by specific choices of the free parameters.
Overall, there are the 4 degrees of freedom (α, n0, ζ, ϕ∗) and we wish to study the dependence of the
solutions on one of them—α. In order to relate the mathematical model to possible experimental
configurations, we express the other free parameters (n0, ζ , ϕ∗) in terms of the laser and target properties
(e.g. the normalized intensity a0, energy EL, spot size σ and the target thickness d), using the following

10



New J. Phys. 22 (2020) 053020 A Formenti et al

Figure 5. (a) Maximum proton energy ϕ0mec2 for different non-equilibrium parameters α, but with constant total number and
total energy of the hot electrons, obtained by varying the model parameters according to figure A1. The shade of the curves
depends on the laser energy EL. (b) Minimum and maximum estimations of ϕ0mec2 as a function of EL obtained respectively for
α = 0 (blue) and α = 1 (red). The purple shaded area represents all the possible outcomes of the model for varying α.

scaling laws:

Relation (23) is the well-known ponderomotive scaling for the electron temperature [52], while (24) is an
empirical scaling based on experimental results, proposed in reference [32]. Additionally, we introduce
equation (25) as a way to relate n0 to the other two parameters ζ and ϕ∗. Here, the laser energy EL is
assumed to be converted into kinetic energy of the hot electrons Etot with efficiency η < 1, so that
Etot(mec2/

√
Re/n0)σ = ηEL. Formally, this leads to (25), where we used the expression of Etot in (21) and

the fact that Etot is actually an energy per unit surface (which is why the spot size appears in the equation).
We fix the conversion efficiency to ∼ 10%, in agreement with the above-mentioned PIC simulation (see
figure 4(a)). Now, once the laser and target configuration is given, we use equations (23), (24) and (25) to
find a set of reference parameters. Then we apply the procedure detailed in appendix A in order to find the
adjusted values of the parameters n0, ζ,φ∗ that keep Ntot and Etot constant for varying α. From now on we
fix the plasma thickness to 5 μm and the laser parameters to the following: 0.8 μm wavelength, 30 fs
duration and 25 μm2 spot area. We let the laser energy vary in the range 0.5–10 J.

Figure 5(a) shows how the maximum ion energy ϕ0 varies with α (the parameters of the model are
those shown in figure A1). Overall, using this approach, the maximum proton energy can increase by up to
≈40% its value at equilibrium, suggesting that non-equilibrium features of the hot electron population can
play a major role in TNSA ion acceleration. Figure 5(b) shows the minimum and maximum predictions for
ϕ0, obtained with α = 0 (blue) and α = 1 (red) respectively, as functions of the laser energy EL. It can be
seen that the scaling with respect to EL is similar for both values of α. The shaded area between the two
curves corresponds to all the possible model outcomes in terms of maximum proton energy for every
α ∈ [0,∞).

In figure 6 we show the results of the model obtained with 1 J laser energy. When varying the
non-equilibrium parameter α, the spatial profiles of the (a) electrostatic potential, (b) electric field and (c)
electron number density change significantly. The further away from equilibrium, i.e. the higher α, the
larger the extension of the sheath. This is a consequence of how a higher degree of non-equilibrium
rearranges the electrons in the phase space (x, px) with respect to the equilibrium case. To this regard,
figure 7 shows the phase space (x, px) of the hot electrons obtained with 1 J laser energy and three different
non-equilibrium parameters: α = 0, 0.1, 1. The superimposed white lines mark the locus of points for
which an electron carries as much kinetic energy as the potential energy it experiences: all electrons within
this region are trapped. Far away from the target–vacuum interface, namely where the potential is low
(ϕ � 1), the larger α is, the more electrons are able to escape the potential, so that the potential drop needs
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Figure 6. Spatial profiles of the (a) electrostatic potential, (b) electric field and (c) electron number density for different
non-equilibrium parameters α. The other model parameters were obtained from relations (23), (24) and (25) for a target with
5 μm thickness and a laser system with 0.8 μm wavelength, 30 fs duration, 25 μm2 spot area and 1 J energy. The hot electron
non-equilibrium features strongly influence the sheath, especially its spatial extension.

Figure 7. Phase space (x, p) of the hot electrons obtained from the solution of the model ϕ(x) for 1 J laser energy and
α = 0, 0.1, 1. The white lines mark the threshold for an electron to be trapped or not. Different non-equilibrium degrees lead to
different arrangements of the hot electrons in phase space. Note that the x-scale is different for each plot.

to fall upon a larger spatial region. This leads to a more extended sheath as shown in figure 6. Of course, a
larger sheath does not necessarily accelerate the contaminants ions more efficiently. The acceleration of
contaminant ions is more efficient as the sheath potential is higher and larger, but not independently. In our
scenario, the value α = 1 might be identified as the optimal non-equilibrium parameter. Indeed, lower
values of α lead to a lower potential barrier and to a less extended sheath. On the other hand, larger values
of α, although generating a longer sheath, lead to lower potential barriers such that the overall result is to
accelerate the contaminant ions to lower maximum energies. All in all, α = 1 realizes a convenient trade-off
between the height of the potential and its extension.

Lastly, note that enabling the non-equilibrium leads to significant differences even for α � 1, where
small variations of α yield significant variations in the main sheath and acceleration properties, such as the
spatial profiles and maximum ion energy. This indicates that even small deviations from equilibrium may
be important and, ideally, should be taken into account when modeling the sheath or when interpreting
experimental results in light of the considered model. Moreover, even if measuring the electrons
distribution function is far beyond experimental capabilities, the electric field and electron density profiles
are accessible observables, for example by means of proton radiography [53–55]. To this regard, our results
offer an interpretative key to relate available experimental observables to a theoretical model, which could
help assessing the actual importance of non-equilibrium.

5. Conclusions

In this paper we have addressed the topic of electron non-equilibrium in the formation of a relativistic
sheath. This is of interest in the context of laser–solid interactions, especially when driving the acceleration
of ions under the TNSA scheme. We have introduced an explicit form for the distribution function fα of the
electron population that generates the sheath, condensing the degree of non-equilibrium in a single
parameter α. Moreover, we have written fα in a Lorentz-covariant form in order to manifestly show that it
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complies with special relativity. The proposed distribution function is also consistent with 3D PIC
simulations of laser–solid interaction, which reinforces the soundness of our choice. Electron populations
that have the same main macroscopic properties (total number, total energy, hence average energy as well),
but different degrees of non-equilibrium, cause the formation of sheaths with significantly different
features. These results indicate that the non-equilibrium kinetic properties of the electron population can
play an important role and that their macroscopic properties may not be not enough to determine the main
sheath quantities and the maximum energy of the ions accelerated via TNSA. Moreover, we find that even a
small degree of non-equilibrium can have an important impact on the main observables, i.e. the electric
field and the electron density. We stress that, albeit having picked a specific non-equilibrium function, our
modeling approach is general. On the one hand the proposed strategy is by no means limited to a specific
choice of the distribution function; on the other hand we have determined the model parameters in a closed
way, namely without having to introduce any other arbitrary or fitting parameter.

In conclusion, we have identified a new approach to model non-equilibrium in the self-consistent
generation of a relativistic sheath. This is a strongly cross-disciplinary topic, being of interest in a variety of
fields, such as astrophysics, accelerator physics, nuclear fusion and advanced laser-driven ion acceleration,
especially when using non-conventional targets. Our results provides a key for the interpretation of those
numerical simulations and experiments that allow to retrieve information on the sheath dynamics.
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Appendix A. Methods to isolate the role of non-equilibrium

Here we report the details of our strategy to find the free model parameters n0 (in the units), ζ and ϕ∗ that
let Ntot and Etot constant when varying α, so that we can study the effect of non-equilibrium
only.

As a first option, one could obtain an analytical expression for Ntot and Etot defined in equations (18) as
a function of the free parameters only by adopting the same approximation strategy as done at equilibrium
to obtain equations (21) (essentially, evaluate the integrand at ϕ∗ and multiply by xd). In this case one has
to solve simple algebraic equations to tune the parameters that let Ntot and Etot constant, equal to their value
at equilibrium. However, using this approach we observed fluctuations in the unapproximated Ntot and Etot

of the order of ∼ 10%. Hence, we prefer to proceed numerically without any approximation (other than
those due to the numerical computations) rather than analytically. We compute Ntot and Etot a posteriori,
once the model has been solved and the potential profile ϕ(x) is known, via numerical integration of
equations (18). Hence, we adopt the following strategy. First, we pick a set of reference parameters n0, ζ,ϕ∗

and fix the product ζϕ∗ once and for all. We solve the model at equilibrium using these parameters to find
Ntot(n0, ζ ,ϕ∗, 0) and Etot(n0, ζ,ϕ∗, 0). Then, for all α �= 0, we use the following two-step
procedure:

• Solve the model with the reference parameters to find Ntot(α) and adjust the reference value n0 to its
updated value n0(α):

n0(α) = n0
Ntot(n0, ζ,ϕ∗,α)

Ntot(n0, ζ,ϕ∗, 0)

• Solve the model with the adjusted parameter n0(α) for many ζ to find the dependence of Etot on ζ ;
then, in order to find ζ(α) (and so ϕ∗(α) according to the fixed product ζϕ∗), solve the implicit
equation in the variable ζ :

Etot(n0(α), ζ,ϕ∗, 0) = Etot(n0(α), ζ,ϕ∗,α).

In this way one obtains the new set of parameter n0(α), ζ(α) and ϕ∗(α) to be used as inputs in the
model when α �= 0.

Figure A1 shows how the free model parameters n0 (panel (a)), T (b) and ϕ∗ (c) need to vary with α,
respectively, in order to keep Ntot and Etot constant within 1% accuracy (the other parameters are the same
as those mentioned in the main text, namely 5 μm thickness, 0.8 μm wavelength, 30 fs duration and
25 μm2 spot area). According to the chosen distribution function, increasing α implies two main
consequences (compare with figure 1): increasing the number of hot electrons at high kinetic energies
(p 
 1) where the potential is low (ϕ ∼ 0); increasing the number of hot electrons at low kinetic energies
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Figure A1. Main results of our approach to isolate non-equilibrium features in the sheath model. Panels (a), (b) and (c) show
how the main free model parameters n0, T and eϕ∗ need to vary with α, respectively, in order to keep the total number Ntot and
total energy Etot of hot electrons constant within 1% accuracy.

(p ∼ 0) where the potential is high (ϕ 
 1). Since the potential, solution of the problem considered here, is

 1 in a significant portion of its domain and Ntot depends exponentially on ϕ(x), then it is easy to see that
increasing α would increase Ntot. The first step of the procedure compensates this effect by decreasing the
parameter n0. At this point, simultaneously increasing α and reducing n0 causes Etot to have a minimum for
α ≈ 1. Hence, the second step of the procedure compensates this behavior by increasing ζ−1 up to α = 1
and decreasing it for α > 1. The behavior of the parameter ϕ∗ is simply a consequence of having fixed the
product ζϕ∗.

Appendix B. Particle-in-cell simulation

We performed an illustrative 3D particle-in-cell simulation of laser–plasma interaction to support the
rationale of our model together with its hypotheses. We used the open source, massively parallel code
piccante [56]. In this simulation a λ-wavelength laser pulse hits a thin solid target that is comprised by a
bulk layer and a thin contaminant layer on non-illuminated side. The box size was [100λ× 60λ× 60λ]
with a resolution of 40 points per wavelength in each direction. The code adopts the Yee algorithm as
Maxwell solver with a time resolution given by 0.98 of the Courant condition. The laser is longitudinally
cos2 with duration (full width half maximum of the field) equal to 15λ/c, while it is transversely
Gaussian with a waist of 4 μm. The normalized peak vector potential is a0 = 4. The laser propagates along
the x direction and is P-polarized along the y direction. The target, irradiated at normal incidence, is a 0.5λ
foil with 40nc electron density and Z/A = 1/2. Its back surface is located at x = 0. The electron population
is sampled with 40 macro-electrons and 2 macro-ions per cell. The contaminant layer is 0.05λ-thick with
Z = A = 1, 7nc electron density, sampled with 64 macro-electrons and macro-ions per cell. The
macro-electrons were initialized with a 5.11 eV temperature, while the ions are initially cold. In our
computation we always consider λ = 0.8μm, so that the laser has a 30 fs duration. The interaction with the
tail of the pulse begins at time 0λ/c, while the pulse peak hits the front surface at 19λ/c. To obtain the
distribution functions shown in figure 4, we only considered those macro-electrons that at time 20λ/c ≈ 53
fs are located in the volume ΔxΔyΔz = [−0.05λ,+0.05λ] × [−2.5λ,+2.5λ] × [−2.5λ,+2.5λ]. Moreover,
all the distribution functions are integrated over the those momentum components that are not shown in
the plot. Lastly, consistently to how the electron distributions are computed, the longitudinal electric field
Ex shown in figure 4(e) is obtained at time 20λ/c by averaging the raw Ex on the transverse region
[−2.5λ,+2.5λ] × [−2.5λ,+2.5λ]. The electrostatic potential ϕ, shown in figure 4(f), is then computed via
spatial integration of Ex.

ORCID iDs

A Formenti https://orcid.org/0000-0002-7887-9313
A Maffini https://orcid.org/0000-0002-3388-5330
M Passoni https://orcid.org/0000-0002-7844-3691

References

[1] Bernstein I B, Greene J M and Kruskal M D 1957 Phys. Rev. 108 546
[2] Harris E G 1962 Il Nuovo Cimento(1955-1965) 23 115–21
[3] Marx K 1968 Phys. Fluids 11 357–65

14

https://orcid.org/0000-0002-7887-9313
https://orcid.org/0000-0002-7887-9313
https://orcid.org/0000-0002-3388-5330
https://orcid.org/0000-0002-3388-5330
https://orcid.org/0000-0002-7844-3691
https://orcid.org/0000-0002-7844-3691
https://doi.org/10.1103/physrev.108.546
https://doi.org/10.1103/physrev.108.546
https://doi.org/10.1007/bf02733547
https://doi.org/10.1007/bf02733547
https://doi.org/10.1007/bf02733547
https://doi.org/10.1063/1.1691911
https://doi.org/10.1063/1.1691911
https://doi.org/10.1063/1.1691911


New J. Phys. 22 (2020) 053020 A Formenti et al

[4] Davidson R C and Krall N A 1970 Phys. Fluids 13 1543–55
[5] Borisov N and Mall U 2002 J. Plasma Phys. 67 277–99
[6] Crowley B, Homfray D, Fantz U, Boilson D and Hemsworth R 2007 Electron energy distribution function measurements by

langmuir probe in iter like negative ion sources AIP Conf. Proc. 925 193–207
[7] Zeng L, Koslowski H, Liang Y, Lvovskiy A, Lehnen M, Nicolai D, Pearson J, Rack M, Denner P, Finken K et al 2015 J. Plasma Phys.

81 475810402
[8] Godyak V A 2006 IEEE Trans. Plasma Sci. 34 755–66
[9] Kaganovich I 2005 Modeling of collisionless and kinetic effects in thruster plasmas The IEPC05 paper-096 Proc. of the 29th Int.

Electric Propulsion Conf. (Princeton, NJ: Princeton University)
[10] Davidson R C and Uhm H S 1982 Phys. Fluids 25 2089–100
[11] Matte J, Kieffer J, Ethier S, Chaker M and Peyrusse O 1994 Phys. Rev. Lett. 72 1208
[12] Liu J, De Groot J, Matte J, Johnston T and Drake R 1994 Phys. Rev. Lett. 72 2717
[13] Benilov M S 2008 Plasma Sources Sci. Technol. 18 014005
[14] Robertson S 2013 Plasma Phys. Control. Fusion 55 093001
[15] Godyak V and Piejak R 1990 Phys. Rev. Lett. 65 996
[16] Gibbon P and Förster E 1996 Plasma Phys. Control. Fusion 38 769
[17] Pukhov A 2002 Rep. Prog. Phys. 66 47
[18] Malka V, Faure J, Gauduel Y A, Lefebvre E, Rousse A and Phuoc K T 2008 Nat. Phys. 4 447
[19] Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751
[20] Davies J R 2008 Plasma Phys. Control. Fusion 51 014006
[21] Umstadter D 2003 J. Phys. D: Appl. Phys. 36 R151
[22] Toncian T, Wang C, McCary E, Meadows A, Arefiev A, Blakeney J, Serratto K, Kuk D, Chester C, Roycroft R et al 2018 Matter

Radiat. Extremes 1 82
[23] Hüller S, Porzio A, Adam J C and Héron A 2019 Phys. Plasmas 26 083107
[24] Wilks S, Langdon A, Cowan T, Roth M, Singh M, Hatchett S, Key M, Pennington D, MacKinnon A and Snavely R 2001 Phys.

Plasmas 8 542–9
[25] Daido H, Nishiuchi M and Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401
[26] Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751–93
[27] Schreiber J, Bolton P and Parodi K 2016 Rev. Sci. Instrum. 87 071101
[28] Passoni M, Bertagna L and Zani A 2010 New J. Phys. 12 045012
[29] Passoni M, Tikhonchuk V, Lontano M and Bychenkov V Y 2004 Phys. Rev. E 69 026411
[30] Lontano M and Passoni M 2006 Phys. Plasmas 13 042102
[31] Bahache A, Bennaceur-Doumaz D and Djebli M 2017 Phys. Plasmas 24 083102
[32] Passoni M and Lontano M 2008 Phys. Rev. Lett. 101 115001
[33] Passoni M, Perego C, Sgattoni A and Batani D 2013 Phys. Plasmas 20 060701
[34] Arber T, Bennett K, Brady C, Lawrence-Douglas A, Ramsay M, Sircombe N, Gillies P, Evans R, Schmitz H, Bell A et al 2015

Plasma Phys. Control. Fusion 57 113001
[35] Cairns R, Mamum A, Bingham R, Boström R, Dendy R, Nairn C and Shukla P 1995 Geophys. Res. Lett. 22 2709–12
[36] Hakim R 1967 Phys. Rev. 162 128
[37] Groot S, Leeuwen W and van Weert C 1980 Relativistic Kinetic Theory: Principles and Applications (Amsterdam: North-Holland)
[38] Hakim R 2011 Introduction to Relativistic Statistical Mechanics (Singapore: World Scientific) https://worldscientific.com/doi/abs/

10.1142/7881
[39] Vasyliunas V and Siscoe G 1976 J. Geophys. Res. 81 1247–52
[40] Fu W Z and Hau L N 2005 Phys. Plasmas 12 070701
[41] Nieves-Chinchilla T and Viñas A F 2008 J. Geophys. Res.: Space Phys. 113 A02105
[42] Bennaceur-Doumaz D, Bara D, Benkhelifa E and Djebli M 2015 J. Appl. Phys. 117 043303
[43] Tribeche M, Amour R and Shukla P 2012 Phys. Rev. E 85 037401
[44] Amour R, Tribeche M and Shukla P K 2012 Astrophys. Space Sci. 338 287–94
[45] Douglas P, Bergamini S and Renzoni F 2006 Phys. Rev. Lett. 96 110601
[46] Shao-ping Z and Pei-jun G 1999 Chin. Phys. Lett. 16 520
[47] Fourkal E, Bychenkov V Y, Rozmus W, Sydora R, Kirkby C, Capjack C, Glenzer S and Baldis H 2001 Phys. Plasmas 8 550–6
[48] Tidman D A and Dupree T H 1965 Phys. Fluids 8 1860–70
[49] Schmitz H 2012 Phys. Plasmas 19 083115
[50] Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W et al 2000

Phys. Plasmas 7 2076–82
[51] Snavely R A et al 2000 Phys. Rev. Lett. 85 2945–8
[52] Wilks S, Kruer W, Tabak M and Langdon A 1992 Phys. Rev. Lett. 69 1383
[53] Borghesi M, Campbell D, Schiavi A, Haines M, Willi O, MacKinnon A, Patel P, Gizzi L, Galimberti M, Clarke R et al 2002 Phys.

Plasmas 9 2214–20
[54] Romagnani L, Fuchs J, Borghesi M, Antici P, Audebert P, Ceccherini F, Cowan T, Grismayer T, Kar S, Macchi A et al 2005 Phys.

Rev. Lett. 95 195001
[55] Mackinnon A, Patel P, Borghesi M, Clarke R, Freeman R, Habara H, Hatchett S, Hey D, Hicks D, Kar S et al 2006 Phys. Rev. Lett.

97 045001
[56] Sgattoni A, Fedeli L, Sinigardi S, Marocchino A, Macchi A, Weinberg V and Karmakar A 2015 (arXiv:1503.02464)

15

https://doi.org/10.1063/1.1693115
https://doi.org/10.1063/1.1693115
https://doi.org/10.1063/1.1693115
https://doi.org/10.1017/s0022377802001654
https://doi.org/10.1017/s0022377802001654
https://doi.org/10.1017/s0022377802001654
https://doi.org/10.1063/1.2773660
https://doi.org/10.1063/1.2773660
https://doi.org/10.1063/1.2773660
https://doi.org/10.1017/s0022377815000380
https://doi.org/10.1017/s0022377815000380
https://doi.org/10.1109/tps.2006.875847
https://doi.org/10.1109/tps.2006.875847
https://doi.org/10.1109/tps.2006.875847
https://doi.org/10.1063/1.863699
https://doi.org/10.1063/1.863699
https://doi.org/10.1063/1.863699
https://doi.org/10.1103/physrevlett.72.1208
https://doi.org/10.1103/physrevlett.72.1208
https://doi.org/10.1103/physrevlett.72.2717
https://doi.org/10.1103/physrevlett.72.2717
https://doi.org/10.1088/0963-0252/18/1/014005
https://doi.org/10.1088/0963-0252/18/1/014005
https://doi.org/10.1088/0741-3335/55/9/093001
https://doi.org/10.1088/0741-3335/55/9/093001
https://doi.org/10.1103/physrevlett.65.996
https://doi.org/10.1103/physrevlett.65.996
https://doi.org/10.1088/0741-3335/38/6/001
https://doi.org/10.1088/0741-3335/38/6/001
https://doi.org/10.1088/0034-4885/66/1/202
https://doi.org/10.1088/0034-4885/66/1/202
https://doi.org/10.1038/nphys966
https://doi.org/10.1038/nphys966
https://doi.org/10.1103/revmodphys.85.751
https://doi.org/10.1103/revmodphys.85.751
https://doi.org/10.1088/0741-3335/51/1/014006
https://doi.org/10.1088/0741-3335/51/1/014006
https://doi.org/10.1088/0022-3727/36/8/202
https://doi.org/10.1088/0022-3727/36/8/202
https://doi.org/10.1016/j.mre.2015.11.001
https://doi.org/10.1016/j.mre.2015.11.001
https://doi.org/10.1063/1.5111934
https://doi.org/10.1063/1.5111934
https://doi.org/10.1063/1.1333697
https://doi.org/10.1063/1.1333697
https://doi.org/10.1063/1.1333697
https://doi.org/10.1088/0034-4885/75/5/056401
https://doi.org/10.1088/0034-4885/75/5/056401
https://doi.org/10.1103/revmodphys.85.751
https://doi.org/10.1103/revmodphys.85.751
https://doi.org/10.1103/revmodphys.85.751
https://doi.org/10.1063/1.4959198
https://doi.org/10.1063/1.4959198
https://doi.org/10.1088/1367-2630/12/4/045012
https://doi.org/10.1088/1367-2630/12/4/045012
https://doi.org/10.1103/physreve.69.026411
https://doi.org/10.1103/physreve.69.026411
https://doi.org/10.1063/1.2184067
https://doi.org/10.1063/1.2184067
https://doi.org/10.1063/1.4994706
https://doi.org/10.1063/1.4994706
https://doi.org/10.1103/physrevlett.101.115001
https://doi.org/10.1103/physrevlett.101.115001
https://doi.org/10.1063/1.4812708
https://doi.org/10.1063/1.4812708
https://doi.org/10.1088/0741-3335/57/11/113001
https://doi.org/10.1088/0741-3335/57/11/113001
https://doi.org/10.1029/95gl02781
https://doi.org/10.1029/95gl02781
https://doi.org/10.1029/95gl02781
https://doi.org/10.1103/physrev.162.128
https://doi.org/10.1103/physrev.162.128
https://worldscientific.com/doi/abs/10.1142/7881
https://doi.org/10.1029/ja081i007p01247
https://doi.org/10.1029/ja081i007p01247
https://doi.org/10.1029/ja081i007p01247
https://doi.org/10.1063/1.1941047
https://doi.org/10.1063/1.1941047
https://doi.org/10.1029/2007ja012703
https://doi.org/10.1029/2007ja012703
https://doi.org/10.1063/1.4906776
https://doi.org/10.1063/1.4906776
https://doi.org/10.1103/physreve.85.037401
https://doi.org/10.1103/physreve.85.037401
https://doi.org/10.1007/s10509-011-0950-0
https://doi.org/10.1007/s10509-011-0950-0
https://doi.org/10.1007/s10509-011-0950-0
https://doi.org/10.1103/physrevlett.96.110601
https://doi.org/10.1103/physrevlett.96.110601
https://doi.org/10.1088/0256-307x/16/6/004
https://doi.org/10.1088/0256-307x/16/6/004
https://doi.org/10.1063/1.1334611
https://doi.org/10.1063/1.1334611
https://doi.org/10.1063/1.1334611
https://doi.org/10.1063/1.1761120
https://doi.org/10.1063/1.1761120
https://doi.org/10.1063/1.1761120
https://doi.org/10.1063/1.4748565
https://doi.org/10.1063/1.4748565
https://doi.org/10.1063/1.874030
https://doi.org/10.1063/1.874030
https://doi.org/10.1063/1.874030
https://doi.org/10.1103/physrevlett.85.2945
https://doi.org/10.1103/physrevlett.85.2945
https://doi.org/10.1103/physrevlett.85.2945
https://doi.org/10.1103/physrevlett.69.1383
https://doi.org/10.1103/physrevlett.69.1383
https://doi.org/10.1063/1.1459457
https://doi.org/10.1063/1.1459457
https://doi.org/10.1063/1.1459457
https://doi.org/10.1103/physrevlett.95.195001
https://doi.org/10.1103/physrevlett.95.195001
https://doi.org/10.1103/physrevlett.97.045001
https://doi.org/10.1103/physrevlett.97.045001
https://arxiv.org/abs/1503.02464

	Non-equilibrium effects in a relativistic plasma sheath model
	1.  Introduction
	2.  Non-equilibrium, relativistic distribution function
	3.  Non-equilibrium in a plasma sheath model
	4.  Non-equilibrium in a laser-driven plasma sheath
	4.1.  Comparison with a 3D particle-in-cell simulation
	4.2.  Consequences on target normal sheath acceleration

	5.  Conclusions
	Acknowledgments
	Appendix A.  Methods to isolate the role of non-equilibrium
	Appendix B.  Particle-in-cell simulation
	ORCID iDs
	References


