Enhanced laser-driven hadron sources with nanostructured double-layer targets

To cite this article: L Fedeli et al 2020 New J. Phys. 22 033045

View the article online for updates and enhancements.
Enhanced laser-driven hadron sources with nanostructured double-layer targets

I. Fedeli1,2 \textcopyright, A. Formenti1, A. Pazzaglia1, F. M. Arioli1,3, A. Tentori1,4 and M. Passoni1 \textcopyright

1Department of Energy, Politecnico di Milano, Italy
2presently at CEA/DES/IRSN, Cadarache, France
3presently at CEA/DES/IRESE/DEC, Cadarache, France
4presently at Université Bordeaux 1, France

E-mail: arianna.formenti@polimi.it

Keywords: laser-driven ion acceleration, ultra-intense lasers, neutron sources, nanostructured targets, particle-in-cell simulations, Monte Carlo simulations

Abstract
Laser-driven ion sources are approaching the requirements for several applications in materials and nuclear science. Relying on compact, table-top, femtosecond laser systems is pivotal to enable most of these applications. However, the moderate intensity of these systems ($I \lessapprox 10^{19}$ W cm-2) could lead to insufficient energy and total charge of the accelerated ions. The use of solid foils coated with a nanostructured near-critical layer is emerging as a promising targeted solution to enhance the energy and the total charge of the accelerated ions. For an appropriate theoretical understanding of this acceleration scheme, a realistic description of the nanostructure is essential, also to precisely assess its role in the physical processes at play. Here, by means of 3D particle-in-cell simulations, we investigate ion acceleration in this scenario, assessing the role of different realistic nanostructure morphologies, such as fractal-like foams and nanowire forests. With respect to a simple flat foil, the presence of a nanostructure allows for up to a $3 \times$ increase of the maximum ion energy and for a significant increase of the conversion efficiency of laser energy into ion kinetic energy. Simulations show also that the details of the nanostructure morphology affect both the maximum energy of the ions and their angular distribution. Furthermore, combined 3D particle-in-cell and Monte Carlo simulations show that if accelerated ions are used for neutron generation with a beryllium converter, double-layer nanostructured targets allow to greatly enhance the neutron yield. These results suggest that nanostructured double-layer targets could be an essential component to enable applications of hadron sources driven by compact, table-top lasers.

1. Introduction

Ion acceleration driven by ultra-intense laser pulses is a well established reasearch topic [1–3]. In state-of-the-art Petawatt-class laser facilities, few nanocoulomb, relatively collimated, broad spectrum ion bunches can be accelerated up to a ~ 100 MeV [4–6] cut-off energy. Target normal sheath acceleration (TNSA) [7] is arguably the most robust and widely studied ion acceleration scheme. In TNSA an ultra-intense laser pulse interacts with a thin solid foil, heating the electrons of the target up to several MeV energies. The expanding electron cloud generates an intense electric field at the back side of the target. This electric field is then responsible for the ion acceleration process. Historically, the foreseen societal application in radiotherapy [8, 9] has been a preeminent driving force behind research efforts on laser-driven ion acceleration. However, existing laser-driven ion sources still fall short of the stringent requirements in terms of energy, monochromaticity and stability [10]. Indeed, up to now, laser-driven ion sources have been routinely used only as a diagnostic tool for transient electromagnetic fields in laser-plasma interaction experiments [11–13].

Especially in recent years, materials and nuclear science have emerged as a promising domain of application of laser-driven ion sources. Proof-of-principle experiments [14] and numerical works [15–17] support the
feasibility of laser-driven ion beam analysis for non-destructive materials characterization. Laser-driven ion sources have been considered to test electronic components in a harsh radiation environment \cite{18}, for thermal stress testing \cite{19}, to study ultra-fast dynamics in irradiated materials \cite{20, 21}, and for materials synthesis \cite{22, 23}. Ultrashort pulsed neutron sources driven by laser-accelerated ions \cite{24–32} have been investigated for applications such as fast neutron spectroscopy \cite{33} and radiography \cite{34}.

What make these applications particularly attractive are the requirements for the ion source. Energies of few MeVs are perfectly suitable for several ion beam analysis techniques \cite{35} or to generate neutrons with a lithium \cite{36} or beryllium \cite{37} converter. Moreover, for selected applications, the inherently broad energy spectrum of a laser-driven ion source \cite{2} is not detrimental \cite{15, 17} and could even be beneficial \cite{18}. Maximum ion energies of \(\sim 1 \) MeV have been recently demonstrated even with commercial, sub-terawatt laser systems \cite{38}. These laser-systems are truly table-top and can operate at a high repetition rate (kiloHertz). Relying on these systems could make laser-driven ion sources portable and competitive with conventional accelerators, paving the way for their widespread adoption in materials and nuclear science.

Over the years, several advanced ion acceleration schemes have been proposed to enhance the properties (maximum energy, angular distribution, total charge …) of the accelerated ions \cite{2, 39, 40}, which could be very beneficial for several of the aforementioned applications. In some scenarios where the ion energy is a critical issue, the use of advanced ion acceleration strategies could even enable a particular application on a given laser system. Neutron conversion is emblematic of this last case, since it is crucial to reach at least the energy threshold for the nuclear reaction.

Among the advanced ion acceleration schemes, the use of foils coated with a low-density, near-critical, nanostructured layer \cite{41, 42} as a target for TNSA is emerging as a promising strategy \cite{43–51}. Here, ‘near-critical’ means having an electron density close to the critical one, \(n_e = \pi m_e c^2 / \lambda^2 e^2 \) (where \(m_e \) is the electron mass, \(\lambda \) is the laser wavelength and \(e \) is the elementary charge). \(n_e \) marks the density threshold for electromagnetic wave transparency. Ultra-intense laser interaction with a plasma having a near-critical density is characterized by a strong coupling and an efficient energy absorption \cite{52–54}. The low-density layer can either be a controlled pre-plasma or a solid nanostructured material with ultra-high void fraction. Both solutions allow for a high absorption efficiency of the laser energy by the hot electrons population, which results into more ions accelerated at higher energies with respect to a simple flat foil \cite{55–57}. Nevertheless, pre-plasmas—usually generated via target pre-expansion induced by the laser pedestal or ns-duration pulses \cite{58, 59}—is affected by poor stability and control, since large deviations may arise depending on the specific laser facility. Indeed, within the literature on laser-driven ion acceleration, the pre-expansion of the target was reported to lead to very different results: ranging from strong enhancement \cite{60}, to mild enhancement \cite{57} or even a reduction \cite{61} of the effectiveness of the acceleration process. Conversely, a nanostructured low-density layer can be produced with tunable and finely controlled properties, which, combined with an in-depth characterization, should lead to more reproducible experimental conditions. For a given envisaged application of laser-driven ion sources, the enhancement due to the advanced targetry would allow to dramatically reduce the requirements on the laser driver. Cheaper, more compact and higher repetition rate lasers could be used for applications which otherwise would have required more powerful, more expensive and definitely non-portable systems.

An accurate theoretical understanding of laser-driven ion sources based on double-layer targets (DLTs) is essential to guide experimental investigations and ultimately to enable applications of these sources. However, the presence of a nanostructured layer poses considerable modeling challenges. Indeed, the exceptional temporal contrast of modern day laser facilities \cite{62–64} could allow a nanostructure to survive long enough to affect the interaction. In previous numerical works \cite{65, 66}, we observed that a detailed modeling of the nanostructure morphology is crucial for a reliable description of the physical processes at play.

In this work, by means of fully 3D particle-in-cell simulations, we model an experimental scenario of enhanced laser-driven ion acceleration where the target is a solid foil coated with a low-density nanostructured layer. A realistic morphology is used for the nanostructured layer and the laser parameters are those of a typical 30–50 Terawatt–class system. We consider two realistic morphologies for the low-density nanostructured coating (a fractal–like foam and a forest). We also couple the results of our particle-in-cell simulations to Geant4 \cite{67} Monte Carlo (MC) code, in order to simulate the conversion of laser-accelerated ions into neutrons \cite{68, 69}, which is a promising application of laser driven ion acceleration. DLTs having a uniform near-critical layer with the same average density of the nanostructured layers are considered as well for comparison. Figure 1 illustrates the general setup and the numerical framework adopted in this work.

Our simulations show that the presence of a nanostructure allows for a significant increase of the maximum ion energy and of the total number of accelerated ions, with the details of the nanostructure morphology affecting both the maximum energy and the angular distribution of the accelerated ions. This translates directly into more neutrons being emitted per laser shot.
In any case, to ascertain the goodness of such a resolution value, we also tested a higher resolution of 60 points per wavelength. Particle-in-cell simulations are a standard numerical technique to investigate laser-plasma interaction. Our work is based on two numerical tools: particle-in-cell and Monte Carlo (MC) simulations. This section describes in detail the methods and codes used in this work and the parameters of the simulations. In the following we will consider a laser wavelength $\lambda = 800$ nm, as for a Ti:sapphire laser system.

2. Methods

Our work is based on two numerical tools: particle-in-cell and MC simulations. This section describes in detail the methods and codes used in this work and the parameters of the simulations. In the following we will consider a laser wavelength $\lambda = 800$ nm, as for a Ti:sapphire laser system.

2.1. Particle-in-cell simulations

Particle-in-cell simulations are a standard numerical technique to investigate laser-plasma interaction. For our 3D simulations we relied on the open source, massively parallel PicCante code. The numerical box was $100\lambda \times 60\lambda \times 60\lambda$, with periodic boundary conditions. The spatial resolution was 40 points per λ in each direction, while the temporal resolution was 98% of the Courant condition. The total duration was $80\lambda/c$. The laser beam had a Gaussian spatial profile with a waist equal to 5 λ and a \cos^2 temporal profile for the fields equal to 15 λ. These parameters model an idealized, high contrast, Ti:sapphire laser system with tens of TW power. The beam was linearly polarized and the angle of incidence was 0°. The normalized intensity was $I_0 = 4(a_0 = eA/m_e c^2$, where e is the elementary charge, A is the vector potential, m_e is the electron mass and c is the speed of light).

Concerning the target, ions were initialized perfectly cold, while electrons were initialized with a very small temperature (few eV). The substrate — i.e. the flat solid foil or bare target — was 0.5 λ thick, with an electron density of 40 n_c. We decided to use an electron density of only 40 n_c for the substrate because 3D simulations with a more realistic density for a highly ionized target ($\sim 100 n_c$) would have required a huge computational effort. However, we performed convergence tests with 2D simulations to assess the appropriateness of our choice for both the solid foil density and the resolution. We let the density of the solid foil vary among 20 n_c, 40 n_c, and 80 n_c, while the resolution varies between 40 pp/λ and 60 pp/λ. The main results of these 2D tests are shown in figure 2, where the protons spectra at time $80\lambda/c$ are shown for (a) a simple 0.5 λ-thick solid foil and (b) a DLT modeled with a uniform near-critical layer with 2.14 n_c density and 4 λ thickness. Increasing the electron density of the substrate from 20 n_c to 80 n_c did not result in any appreciable change of the ion energy spectrum for the DLT. Instead, a strong reduction of the maximum ion energy was observed for the simple flat target under the same density variation. Nonetheless, when doubling the density from 40 n_c to 80 n_c, only a slight reduction is obtained. These results confirm that using a substrate density of 40 n_c in our simulations should not significantly affect the results presented in this manuscript. Overall, a solid density of 40 n_c is found to be a good compromise: large-enough to be overdense, but low-enough to let us resolve the skin depth of the laser with a resolution of 40 pp/λ. In any case, to ascertain the goodness of such a resolution value, we also tested a higher resolution of 60 points per λ in 2D geometry and we observed negligible differences in the proton spectra (see figure 2).

![Figure 1. Scheme of the numerical framework adopted for this work. (a) Typical parameters of a 50 TW table-top laser system are considered (b) The use of targetry solutions for repetitive operation is considered to estimate total yields over several minutes. (c) Scanning electron microscope picture of a nanostructured low-density foam similar to those used in [48, 49]. (d) 3D particle-in-cell simulations are used to model laser-driven ion acceleration (reproduced with permission from [70]). (e) Laser-accelerated ions are fed into the Geant4 Monte Carlo code to simulate neutron generation in a beryllium converter.](image)
40 macro-electrons per cell and 2 macro-ions with $Z/A = 0.5$ per cell were used. The hydrocarbon contaminant layer was 0.05 λ thick with an electron density of 7 n_e, a proton density of 1 n_p and a fully ionized carbon density of 6 n_i (64 macro-particles per cell per species were used). The low-density layer was chosen to be 4 λ thick. Three different morphologies (an idealized uniform plasma, a fractal-like nanostructured foam and a random nanowires forest) and two different average densities (1.5 n_e and 2.29 n_e) were considered as well as the case of a simple flat target for comparison, for a total of seven simulations. Both the realistic morphologies considered here are representative of low-density nanostructured materials used in laser-plasma interaction experiments [48, 49, 74, 75].

The foam layer is generated through an extension of the diffusion-limited cluster-cluster aggregation model (DLCCA), designed to simulate the structure of fractal aggregates, such as colloids and soot [76] (a detailed description of the method is provided in [66]). The building blocks of the fractal aggregates are nanospheres having a local electron density of $\sim 40 \ n_e$, arranged in such a way that the filling factor is 5.7% and 3.8% for the two density values. The radii of the nanospheres are 0.05 λ for the higher density foam and 0.047 λ for the lower density foam. Nanowires forests are modeled as a collection of cylinders, with a radius of 0.12 λ and an inclination angle extracted randomly from a uniform distribution between -30° and $+30^\circ$ with respect to laser axis. The nanowires have a local electron density of $\sim 40 \ n_e$ and their number is chosen so that the filling factor is either 5.7% or 3.8%. For the nanostructured layers 40 macro-electrons per cell and 2 macro-ions with $Z/A = 0.5$ per cell were used, while for the uniform layers 4 macro-electrons per cell and 1 macro-ion with $Z/A = 0.5$ per cell were used. The main properties of the near-critical layers are summarized in table 1. All the considered near-critical layers are coupled to a substrate with 0.5 λ thickness and 40 n_e electron density.

We point out that the nanostructures show large local fluctuations of their average density on scales comparable with the laser waist (5λ). Figures 3(a) and (b) show the density profiles of the near-critical layers integrated over a transverse region of size 25 λ^2 and 100 λ^2, respectively. On the illuminated region (size $\sim 100 \lambda^2$,

![Figure 2. Proton spectra at time 80 λ/c obtained in the 2D PIC convergence tests varying the resolution (40 and 60 points per λ) and the density of the solid foil ($20 \ n_e$, $40 \ n_e$ and $80 \ n_e$) for (a) the bare target case and (b) a double-layer target with a homogeneous near-critical layer of 2.14 n_e density and 4 λ thickness.](image)

<table>
<thead>
<tr>
<th>Near-critical layers</th>
<th>Morphology</th>
<th>Homogeneous</th>
<th>Foam-like and random wires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling factor</td>
<td>100%</td>
<td>3.8% and 5.7%</td>
<td></td>
</tr>
<tr>
<td>Local electron density</td>
<td>1.5 n_e and 2.29 n_e</td>
<td>40 n_e</td>
<td></td>
</tr>
<tr>
<td>Average electron density</td>
<td>1.5 n_e and 2.29 n_e</td>
<td>1.5 n_e and 2.29 n_e</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>4 λ</td>
<td>4 λ</td>
<td></td>
</tr>
</tbody>
</table>
2.2. MC simulations
We simulated the process of proton-to-neutron conversion via MC simulations. To this purpose, we employed the Geant4 (Geometry and Tracking) toolkit [67], which is widely used to simulate particle transport through matter in a variety of scenarios. Here, we are interested in a reliable description of neutron generation from nuclear reactions induced by moderate energy protons (∼few MeVs). The main physical processes, i.e. the hadronic processes, were included via the G4HadronPhysicsQGSP_BIC_AllHP physics list, which was found to be the most reliable in a previous benchmarking work [68]. Due to the hadronic nature of the process, the primary bunch is only made of protons, whereas we disregarded electrons and photons coming from the prior laser-plasma interaction process. The proton momentum distribution is obtained from the 3D PIC simulations results. Indeed, 3D PIC simulations allow one to retrieve the full momentum distribution of any species. Therefore, we sampled the accelerated protons momentum distribution from the PIC output with the Inverse Transform Sampling method. Such sampling procedure is used in the MC code to initialize the energy and propagation direction of the primary proton bunch. The proton source is spatially point-like and is positioned 1.5 cm away from the converter. In each case, 10^{10} protons were shot. The converter is made of pure beryllium with thickness equal to the range of the most energetic protons (0.009–0.06 cm). The main nuclear reactions at play are (p, n^*).

3. Results
In this section we present the results of our numerical investigation, with a particular focus on ion acceleration and neutron generation. A brief discussion of the physical processes at play in ultra-intense laser–plasma interaction is provided as well.

3.1. Laser absorption into hot electrons
Laser absorption into electron kinetic energy in a near-critical plasma is a complicated, multifaceted process [52–54, 77]. In the case of a nanostructured plasma, the absorption process is further complicated by the inhomogeneities of the density profile, which are likely to be maintained during the interaction, especially because the ion dynamics is slower than the tens-of-fs laser temporal duration [65, 66]. In our scenario, the foam targets lead to an increased laser absorption into electrons. The flat target allows for ∼10% conversion of laser energy into electron kinetic energy, while the remaining portion of the laser is mostly reflected. On the other hand, the DLTs allow for a maximum electron absorption of ∼40%–60% (except for the denser homogeneous foam, which is too opaque for the considered pulse, for which it is ∼20%). Depending on the morphology of the nanostructure, the absorption process leads to different features of the hot electron population, as shown in panel (b).
In particular, the presence of a near-critical nanostructured layer leads to significantly higher electron energies and a broader angular distribution. Concerning the homogeneous foams instead, the relatively dense \(2.29 \, n_t\) uniform layer is barely transparent for a \(a_0 = 4\) laser beam. This means that the absorption efficiency is not significantly higher than for the flat target. The uniform foam with a density of \(1.5 \, n_t\) and the generation of hot electrons is improved, but still significantly below what is obtained with the nanostructured foams. These differences translate into different strengths and extensions of the quasi-static electrostatic fields at the back side of the target. Since the ion acceleration process is TNSA-like, these features have a profound influence on the properties of the accelerated ions. However, a detailed study of the absorption process requires an extensive, dedicated, investigation, which is not the focus of this manuscript and has been partially addressed elsewhere \([55, 65, 66]\).

3.2. Enhanced laser-driven ion acceleration

Figure 5 shows the salient features of the accelerated ions obtained with the \(2.29 \, n_t\) foam-coated targets. The results for a simple flat target are reported as well for comparison. With respect to a simple flat target, the presence of the homogeneous foam leads only to a moderate enhancement of the cut-off energy of the accelerated ions (from \(\sim 2\) to \(\lesssim 3\) MeV). On the contrary, the target coated with a fractal-like DLCCA foam...
attains \(\sim 4.5 \) MeV and the target coated with a random nanowire forest allows to obtain slightly more than 6 MeV, a \(3 \times \) increase with respect to the simple flat target. These results are in agreement with what was observed for the electron population, since in a TNSA-like scheme a higher efficiency of laser-to-electrons coupling generally results into higher cut-off energies of the accelerated ions.

Concerning the angular distribution of the accelerated ions, the presence of a nanostructured layer seems to lead to a broader angular spread. Again, this is in agreement with what was observed for the electron population. Moreover, the angular distribution is much less homogeneous, with ‘holes’ and denser stripes appearing in the ‘synthetic radiochromic film’ diagnostic. These features are essentially irrelevant for the application of laser-driven proton sources considered here (neutron generation). However, they might be a severe hindrance if such a source is used for proton radiography, where having a smooth angular distribution is essential.

Figure 6 reports also the proton energy spectra obtained with foams having a lower average density (1.5 \(n_t \)). The most significant difference concerns the homogeneous foam: the lower density leads to a much greater laser absorption and therefore a higher maximum energy of the ions. For the structured foams, the lower average density has only a mild effect, slightly beneficial for the DLCCA foam and slightly disadvantageous for the nanowires foam. From the point of view of applications requiring stable ion fluxes, this mild dependence on the

Figure 5. (a) Scheme to clarify the conventions used for the angles in the other panels. (b) Ion energy spectra for the three cases having \(n_t = 2.29 n_t \) and for the monolayer target for comparison at time 80 \(\lambda / c \). (c) Snapshots of the 3D PIC simulations at time 20 \(\lambda / c \). The \(\text{z} \) component of the magnetic field is shown in blue-red scale, while the electron density is shown in grayscale. (d) ‘Synthetic radiochromic films’ at time 80 \(\lambda / c \). Each panel shows the angular distribution of the emitted ions for a given energy range (indicated above) and for a given target configuration.
density could be a considerable advantage. The average density of nanostructured targets might change from sample to sample, due to unavoidable fluctuations in the manufacturing process. Our results suggest that the properties of an ion source based on these targets would remain relatively stable, even with large shot-to-shot variations of the target properties. This is further supported by results obtained in a previous work [66], where we considered laser interaction with nanostructured foams having quite different morphologies but the same average density, observing only a mild effect on laser absorption.

3.3. Enhanced neutron generation

Figure 6 represents the cross sections for \((p, n^*)\) reaction in \(^9\text{Be}\), together with the energy spectra of the accelerated ions for the different simulated scenarios obtained at 80λ/c (colored curves, left axis).

Figure 6. The graph shows the cross section for \((p, n^*)\) reaction in \(^9\text{Be}\) (gray curve, right axis), together with the energy spectra of the accelerated ions for the different simulated scenarios obtained at 80λ/c (colored curves, left axis).

Figure 7. The panel on the left shows the energy distribution of the generated neutrons in all the simulated cases. The emission is integrated in a 15° cone around target normal in forward direction. The panel on the right shows the angular distribution of the emitted neutrons for all the simulated cases. 0° corresponds to the forward direction. The dent at \(\sim 90°\) corresponds to neutrons propagating inside of the beryllium converter.

Figure 7. The panel on the left shows the energy distribution of the generated neutrons in all the simulated cases. The emission is integrated in a 15° cone around target normal in forward direction. The panel on the right shows the angular distribution of the emitted neutrons for all the simulated cases. 0° corresponds to the forward direction. The dent at \(\sim 90°\) corresponds to neutrons propagating inside of the beryllium converter.

3.3. Enhanced neutron generation

Figure 6 represents the cross sections for the \((p, n^*)\) reaction in \(^9\text{Be}\), together with the energy spectra of the accelerated ions for all the simulated cases. Figure 7 illustrates the properties of the emitted neutrons in all the simulated cases, while figure 8 summarizes the proton-to-neutron conversion rate (top) and the total neutron yield (bottom). A first crucial observation is that accelerating protons at least up to 2 MeV is absolutely necessary to obtain neutron conversion, since this is the threshold for the nuclear reaction to take place. When the simple flat target is used for ion acceleration, the energy cut-off is barely above the 2 MeV threshold for neutron conversion (see figure 6), with extremely few ions having enough energy to have a non-zero chance of generating a neutron. This leads to a very low p-to-n conversion rate (\(\sim 10^{-8}\) neutrons/protons), hence low neutron yield (\(\sim 10^{-2}\) neutrons/shot), as shown in figures 7 and 8. The presence of a near-critical layer leads to more ions having
enough energy for a (p, n*) reaction (see figure 6). This leads to a very strong enhancement of the p-to-n conversion rate. Assuming that 10^{10} protons are accelerated above 2 MeV with the flat foil and taking into account the relative number of protons accelerated to energies above the reaction threshold, we also obtain a very strong enhancement (from 4 to 7 orders of magnitude) of the neutron yield with respect to the simple flat target, as shown in figure 8. Among the DLTs, the denser homogeneous foam is the worst performing case ($\sim 10^6$ neutrons/shot), while all the other cases fall within the $10^8–10^9$ neutrons/shot range.

It is also worth highlighting that the cross section for (p, n*) reaction in 9Be peaks at ~ 6 MeV (see figure 6, gray curve). Therefore, the proton energies obtained with the nanostructured targets are already enough to obtain optimal neutron conversion.

The left panel of figure 7 shows the energy spectra of the neutrons emitted in a 15° cone around the target normal in the forward direction. The distributions are quite broad, with a peak at 1–2 MeV and a cut-off extending up to 4 MeV, which means that the neutron source described here generates fast neutrons. A cut-off of ~ 4 MeV is coherent with a maximum ion energy of ~ 6 MeV and a negative Q-value of the (p, n*) reaction of ~ -1.85 MeV. Neutrons are emitted in all directions, as shown in the right panel of figure 7. However, the angular distribution is not uniform: about one order of magnitude more neutrons are emitted in forward direction. This could be beneficial for applications, also possibly mitigating radio-protection concerns.

4. Discussion

We presented a scheme of an ion source able to accelerate protons to an energy of few MeVs, driven by a moderately intense laser thanks to the use of nanostructured DLTs. We addressed the issue of setting up a description that takes into account non-trivial features, such as the details of the target nanostructure, the effect of a density fluctuation and the direct coupling with a p-to-n converter. Including these features in the description should be crucial if one expects some kind of quantitative agreement with experiments or aims at designing an actual source.

As discussed in the introduction, the few MeVs energy range is suitable for several applications in materials science. There exists a subset of applications requiring only a modest particle flux, such as the so-called proton induced x-ray emission spectroscopy [35], an ion beam analysis technique. This technique could be an ideal application of laser-driven ion sources [17], since few 10s of laser shots could be enough to complete a
measurement. Our work represents a step forward in making the aforementioned moderate-energy applications of laser-driven ions a reality.

Adding a beryllium converter, we estimate that the laser-driven neutron source described in this work could provide \(5 \times 10^5\) neutrons per laser shot if \(10^{10}\) protons are accelerated to energies above the reaction threshold. Adopting targetry solutions analogous to those described in \([70, 78]\) should allow operation of such a neutron source in a repetitive regime, for at least \(10^3\) laser shots. Since compact 50 TW laser systems able to attain a repetition rate of \(\sim 10\) Hz are commercially available \([79]\), we estimate a neutron flux of \(5 \times 10^6\) n s\(^{-1}\) sustained for \(10^2\) s to be within reach of existing technology. This seems doable from the practical point of view. In the most common configuration the target consists of a perforated holder upholding the DLT. In this case, the main limitation comes from the target transverse size and consequently from the number of holes that can be drilled in the holder. No actual limitation comes from having to grow the foam layer on a large substrate (in the worst case different targets may be juxtaposed). In previous experiments holders with \(\sim 200\) holes were employed, so that shooting hundreds of times at 1 Hz repetition rate seems doable. After that, a new target needs to be installed.

Our estimation for the neutron flux suggests that it could be comparable with that of other proposed compact laser-driven neutron sources reported in the literature, where for ‘compact’ we mean relying on tabletop Ti:sapphire lasers not exceeding \(\sim 100\) TW. For instance, the interaction of a few mJ laser at kHz frequency with a heavy-water jet \([80, 81]\) has been reported to lead to an average neutron yield of \(2 \times 10^5\), while \(2 \times 10^6\) neutrons per shot have been obtained via photoneutron generation with wakefield-accelerated electrons driven by a 0.5 J, 10 TW laser at \(\sim 10^{-2}\) Hz \([82]\). Concerning schemes similar to that proposed here, where a target for ion acceleration and a separate converter for neutron generation are used, a yield of \(\sim 10^6\) neutrons per steradian per shot can be obtained with few J lasers, but relying on deuterated targets (see \([29]\) and references therein). In any case, it is worth remarking that the estimation of the yield of our source depends on our specific choices for the parameters of the contaminant layer, which are unfortunately not well characterized from the experimental point of view.

Conventional, portable, neutron sources based on deuterium–deuterium or deuterium–tritium fusion reaction can attain neutron fluxes two orders of magnitude higher than the source described here \([83]\). An improvement of the neutron yield for our source could be obtained using deuterated targets for ion acceleration, a strategy explored in several works \([25–28, 32, 34]\). Indeed, the \(^7\)Be(d, n) cross section is significantly higher than \(^9\)Be(p, n) cross section and the energy threshold for the projectile is lower \([84]\). This could allow to partially close the gap. However, the main strength of laser–driven neutron sources is not the average flux, for which competing with conventional sources seems to be a daunting task. Rather, the main advantages of a laser–driven sources lie in their pulsed nature and in their extremely short duration. A pulsed source could be beneficial to reduce signal-to-noise ratio in several applications (e.g. radiography or spectroscopy), since temporally gated detectors could be synchronized with the laser pulse. Indeed, ‘flash neutron radiography’ has been suggested in previous works as an application especially suited for laser-driven neutron sources \([85]\). Overall, our modeling approach could be used to guide the design and the optimization of these kinds of applications.

5. Conclusion

We have performed a numerical simulation campaign of a laser–driven ion acceleration scheme based on an advanced targetry solution, and of a neutron source based on this scheme.

DLTs consisting in a near-critical layer coupled to a solid foil can enhance the efficiency of the ion acceleration process, leading to more ions being accelerated up to higher energies. This results in a strong enhancement of the neutron yield when these ion sources are coupled with a suitable converter. Since one promising way to realize a near-critical layer consists in exploiting low-density nanostructured materials, we assessed the role of different realistic nanostructure morphologies on the ion acceleration process. We found that a realistic modeling of the nanostructured target is essential to provide reliable indications for the design of experiments and for the development of laser–driven ion sources.

Our results suggest that nanostructured DLTs could be a crucial component to enable applications of hadron sources driven by compact, table-top lasers and our work provides essential tools for the numerical modeling of these schemes.

Acknowledgments

We thank Francesco Mirani, Politecnico di Milano (Italy), for useful discussions and for his assistance on the set-up of the Monte Carlo simulations. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ENSURE grant...
agreement No 647 554 and INTER grant agreement No 754 916). We also acknowledge Iscra access scheme to MARCONI and GALILEO High Performance Computing machine at CINECA (Casalecchio di Reno, Bologna, Italy) via the projects IRONMAN, PIMENTO and ELF.

ORCID iDs

L Fedeli https://orcid.org/0000-0002-7215-4178
M Passoni https://orcid.org/0000-0002-7844-3691

References

[27] Zulick C et al 2013 Energetic neutron beams generated from femtosecond laser plasma interactions Appl. Phys. Lett. 102 124101
[34] Roth M et al 2013 Bright laser-driven neutron source based on the relativistic transparency of solids Phys. Rev. Lett. 110 044802
[37] Marion J B 1956 Excited states in Be10 Phys. Rev. 103 713–7
(43) Yogo A et al 2008 Laser ion acceleration via control of the near–critical density target Phys. Rev. E 77 016401
(60) Gray R J et al 2014 Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients New J. Phys. 16 113075
(63) Schramm U et al 2017 First results with the novel petawatt laser acceleration facility in dresden 8th Int. Particle Accelerator Conf. (IPAC’17) (Copenhagen, Denmark, 14–19 May) pp 48–52 JACOW, Geneva, Switzerland
(64) Obst L et al 2018 On–shot characterization of single plasma mirror temporal contrast improvement Plasma Phys. Control. Fusion 60 054007
(68) Tentori A 2018 Laser–driven neutron sources: a first numerical investigation Master’s Thesis Politecnico di Milano, Italy http://hdl.handle.net/10589/139122
(69) Arioli F M 2018 Compact laser–driven neutron sources: a theoretical investigation Master’s Thesis Politecnico di Milano, Italy http://hdl.handle.net/10589/142386
(70) Principe I et al 2017 Targets for high repetition rate laser facilities: needs, challenges and perspectives High Power Laser Sci. Eng. 5 e17
(74) Bargsten C et al 2017 Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: scaling to Terabar pressures Sci. Adv. 3 e1601358
(75) Cristoforetti G et al 2017 Transition from coherent to stochastic electron heating in ultrashort relativistic laser interaction with structured targets Sci. Rep. 7 41479
(77) Askan’yan G A, Bulanov S V, Pogoraro F and Pukhov A M 1994 Magnetic interaction of self–focusing channels and fluxes of electromagnetic radiation: their coalescence, the accumulation of energy, and the effect of external magnetic fields on them JETP Lett. 60 251–7
[84] Koning A J and Rochman D 2012 Modern nuclear data evaluation with the TALYS code system Nucl. Data Sheets 113 2841–934 Special Issue on Nuclear Reaction Data