
Contents lists available at ScienceDirect

Materials Characterization

journal homepage: www.elsevier.com/locate/matchar

Reference-free evaluation of thin films mass thickness and composition
through energy dispersive X-ray spectroscopy

Andrea Pazzagliaa,⁎, Alessandro Maffinia, David Dellasegaa, Alessio Lampertib, Matteo Passonia

a Department of Energy, Politecnico di Milano, via Ponzio 34/3, I-20133 Milan, Italy
b CNR-IMM, Unit of Agrate Brianza, via Olivetti 2, I-20864 Agrate Brianza (MB), Italy

A R T I C L E I N F O

Keywords:
Energy dispersive X-ray spectroscopy (EDS)
Electron probe microanalysis (EPMA)
Thin film
Mass thickness
Chemical composition
Electron transport

A B S T R A C T

In this paper we report the development of a new method for the evaluation of thin films mass thickness and
composition based on the Energy Dispersive X-Ray Spectroscopy (EDS). The method exploits the theoretical
calculation of the in-depth characteristic X-ray generation distribution function (ϕ(ρz)) in multilayer samples,
where ϕ(ρz) is obtained by the numerical solution of the electron transport equation. Once the substrate com-
position in known, this method gives reliable measurements without the need of a reference sample and/or
multiple voltage acquisitions.

The electron transport model is derived from the Boltzmann transport equation and it exploits the most
updated and reliable physical parameters in order to obtain an accurate description of the phenomenon. The
method for the calculation of film mass thickness and composition is validated with benchmarks from standard
techniques. In addition, a model uncertainty and sensitivity analysis is carried out and it indicates that the mass
thickness accuracy is of the order of 10 μg/cm2, which is comparable to the nuclear standard techniques re-
solution.

We show the technique peculiarities in one example model: two-dimensional mass thickness and composition
profiles are obtained for a ultra-low density, high roughness, nanostructured film.

1. Introduction

Measuring film mass thickness through Energy Dispersive X-Ray
Sprectroscopy (EDS), also known as quantitative Electron Probe
Microanalysis (EPMA), was proposed for the first time in 1960 by
Sweeney, Seebold and Birks [1]. It is of a great appeal thanks to the
non-destructiveness of the measurement, the use of a common appa-
ratus (a scanning electron microscope, SEM, with an energy dispersive
X-ray spectrometer, EDS), the roughness unaffected measurement and
the high spatial resolution down to tens of nanometers. The technique
consists of the measurement of the characteristic X-rays emitted from
the sample from the atoms ionized by the primary electron beam, and
then calculating the ratio (generally known as k-ratio) of the emitted X-
ray intensities for each element in the sample from the ones emitted
from homogeneous reference sample of known composition. Thus, it is
possible to relate the k-ratio to the film mass thickness through the
knowledge of the ϕ(ρz) curve, which is defined as the distribution in
depth of the generation of characteristic X-rays [2,3]. The knowledge of
this distribution is of crucial importance in the determination of mass

thickness; nevertheless its shape depends on the ionizations caused by
energetic electrons, which undergo complex multiple scattering events
and, consequently, a ϕ(ρz) function not trivial to determine.

Since the first pioneering measurements of ϕ(ρz) curves in 1951 [4]
considerable effort has been expended on developing semiempirical
models that properly predict the ϕ(ρz) functions [5]; this resulted in the
first commercial reliable software in the '90s [6–8]. The optimization of
the models continues till today, and a range of software which char-
acterize stratified samples are available [9,10]. In recent years, this
technique has shown its strength also in the measurement of ultra-low
density nanostructured films, which could not be characterized by most
of the standard techniques [11]. Nevertheless, all this EPMA software
rely on empirical or semiempirical models based on databases of
measurements and so they are limited by a low flexibility and by the
intrinsic uncertainty of the experimental data. In addition, most of them
suffer from methodological limitations [12]: the measurement proce-
dure which assures the highest accuracy needs EDS measurements of a
standard reference sample having the same composition of the substrate
or the film, which is not always available, and it needs also many
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acquisitions, higher than 3, at different accelerating voltages, which
involves time-consuming measurements.

Only recently, an attempt to obtain ϕ(ρz) curves in a theoretical way
has been carried out. Using a Monte Carlo approach it is possible to
simulate the electron transport phenomenon also in complex geome-
tries [13–16] and consequently also the X-ray generation distributions
can be calculated, in order to obtain measurements of film mass
thickness [17]. However, it is well known that Monte Carlo methods
suffer from statistical errors that can be reduced only with high com-
putational time, which goes in the direction of undesirable long pro-
cedures for the purpose of thin film mass thickness measurements. In
addition, a recent reliability analysis showed systematic discrepancies
between the simulated and the experimental values of k-ratios [18].

On the other hand, the problem of electron transport in solids can be
dealt using a kinetic approach, using the Boltzmann transport equation:
exploiting some reasonable assumptions and the system symmetry, a
simpler equation, in the Fokker Planck form, was derived, which can
easily be solved numerically [19,20]. This powerful equation was used,
in a stationary form, to calculate the deposition of energy and the
fraction of backscattered electrons in homogeneous thin films [21,22].
This transport equation, in the time-dependent form, allowed also the
calculation of the ϕ(ρz) function in the case of homogeneous samples
[23,24]. Although this approach could lead to several advantages, as
the theoretical determination of ϕ(ρz) and the quite easy numerical
solution, it was not adopted in the determination of the X-rays gen-
eration distribution in multilayer geometries. In addition, the lack of
precision in the involved physical parameters resulted in a significant
inaccuracy in the ϕ(ρz) function.

This work lies within this particular approach, and we present im-
portant improvements: the solution of the electron transport equation is
carried out with more precise physical parameters and in a multilayer
geometry. The resultant ϕ(ρz) functions are consequently more reliable
and, thanks to the multilayer description, they enable relating thin film
mass thickness and composition to EDS data using an innovative
method: instead of the k-ratios, the ratio of the film X-rays intensities
over the substrate intensity overcomes the need of reference samples
and multiple voltages measurements, once the substrate composition is
known. Reference-free measurements are particularly appealing in the
material science, where thin films of unknown composition and mass
thickness are often deposited into well characterized substrates.

2. Reference-free mass thickness and composition evaluation

The aim of this work is to retrieve thin film mass thicknesses τ and
compositions CF, k in a film-substrate geometry, from EDS measure-
ments, without the need of reference samples and multiple voltages
measurements. In the literature, the mass thickness determination is
done through the measurements of the ratio of characteristic X-rays
emitted from the multilayer sample with respect to a reference homo-
geneous sample, known as k-ratios (k= IF/IFref or k= IS/ISref, where the
F and S subscripts refer to the film and substrate layers respectively),
and from the knowledge of the in depth X-ray generation distributions ϕ
(ρz). In this work we propose using a different approach based on the
measurement of different ratios, called K-ratios (with a capital ‘K’ to
distinguish it from the conventional k-ratio), of film X-ray intensities
over the substrate ones which enables, when the substrate composition
CS, j is known (which is a common situation), to overcome the need of
reference samples. The method consists of relating the K-ratios to the
thin film mass thickness τ and composition CF, k (see Fig. 1a). This is
done through the following equation:
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where IF, i is the intensity of measured X-rays generated in the film by
the k-th element while IS, j is the substrate intensity of the j-th element;

εk and εj are the detector efficiencies at the X-ray energies of the k-th
and j-th elements respectively; CF, k and CS, j are the atomic fractions of
k-th and j-th elements in the film and in the substrate, χ= μ/(ρ cosα) is
the attenuation coefficient (α is the angle of the detector with respect to
the interface of the sample) and the subscripts refer respectively to the
layer and the X-ray energy.

Thus, if the ϕ(ρz) distributions are known, the Eq. (1) can be nu-
merically solved to obtain, from measured K-ratios, the film mass
thickness τ and the film atomic composition CF, k; the calculation of the
X-ray generation as a function of depth is not straightforward because it
depends on the complex physics of electrons multiple scattering with
the additional problem of the multilayer geometry, which can introduce
strong perturbations to the ϕ(ρz) curves compared to a homogeneous
bulk sample.

Consequently a theoretical approach should be used to describe the
electron transport into multilayer samples and then to derive accurate ϕ
(ρz) functions; in particular we adopt a kinetic approach which is de-
scribed in Section 2.1.

We also point out that the relation (1) is based on the spatial one
dimensional approximation, namely that all the quantities depend only
on the sample depth variable, which is valid in the cases where τ and CF,

k vary slowly with respect to the lateral distribution of X-ray generation
ψ(ρr); we calculate this function in Section 2.2, with a hybrid fluid-
kinetic approach, in order to retrieve the EDS measurements lateral
resolution.

2.1. Electron transport model

The X-ray generation depth distribution ϕ(ρz) can be calculated
with a kinetic approach from the knowledge of the electron distribution
function → →F r p t( , , ), which solves the Boltzmann transport equation. We
exploit the problem symmetries, by reference to Fig. 1b, to neglect the
lateral spatial coordinates x and y; then, if we express the momentum
by the energy and the orientation, within the spherical coordinates, we
can also neglect the azimuthal angle φ. In addition, it is useful to relate
the time to the path travelled by an electron via its velocity. In these
new coordinates the number of variables of the electron distribution
function are thus reduced from 7 to 4: one spatial dimension, two
momentum dimensions and one time variable,

→ → → =F r p t F z E vt s( , , ) ( , ϑ, , ), where z is the depth, ϑ the angle of the
velocity vector with respect to the z axis, E the energy and s the path
length travelled by the electron. Finally, it is more convenient to ex-
press the spatial variables in terms of mass and we obtain F(ρz,ϑ,E,ρs).
Accordingly, the ϕ(ρz) function is calculated as an integration of the
distribution function over all the variables except ρz, with a weight
function which represents the microscopic ionization cross section σion,
multiplied by the fluorescence yield ω, the atomic fraction C and the
atoms number density, namely the number of atoms per unit volume:

Fig. 1. Scheme of the problem geometry. In (a) the characteristic X-rays
emission and measurement is represented, while in (b) a sample electron tra-
jectory is shown, with the variables that are used in the analytical treatment of
the electron transport.
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Where Nav is the Avogadro number and A the atomic weight (in mg/
mol units), eV is the initial electron energy, which corresponds to the
accelerating voltage times the electron charge, while ρsR is the electron
mass range (calculated using an empirical relation or the stopping
power integration [25]) in mg/cm2 units. Then ϕ(ρz) has the units of 1/
(mg/cm2) and, considering that each energetic electron carries e charge,
we can also normalize the distribution to the electron gun current and
express it in 1/(μA mg/cm2) units.

In order to make feasible the determination of F via the Boltzmann
transport equation, some useful assumptions can be exploited, in order
to further simplify the equation:

1. The electrons collide with atoms in two decoupled ways: elastic and
inelastic collisions

2. The elastic collisions change the electron trajectories without af-
fecting the electron energies (we neglect the atom recoil energy)

3. The inelastic collisions make the electrons lose energy without af-
fecting their trajectories (the momentum transfer is negligible with
respect to elastic collisions)

These assumptions are reasonable (for a detailed justification see
[26]) and they enable to separate the electron distribution function:

=F ρz E ρs f ρz ρs g E ρs( , ϑ, , ) ( , ϑ, ) ( , ) (3)

Including this relation in the Boltzmann equation and applying the
variable separation method we obtain two coupled transport equations:
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respect to the mass coordinates. From Eq. (4), expressing the integral of
collisions and expanding in power series [19], an equation which de-
scribes the elastic multiple scattering process can be derived:
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where ρλtr is the mass transport mean free path, which is a functional of
the differential elastic cross section ∂σe(θ,E)/∂θ:

∫= − ∂
∂ρλ

E N
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The dependence of the transport mean free mass path on the depth
variable is due to the multilayer geometry, so this parameter follows a
piecewise trend along ρz. It should be noted that the coupling between
the two transport equation is mediated by the ρλtr parameter because it
is evaluated at the mean energy ∫=E E g E ρs dE( , ) which is calculated
from the solution of Eq. (5), which describes the electron energy loss
process.

The energy transport problem could be solved with the continuous
slowing down approximation (CSDA), which enables to express the
energy with a one-to-one relation to the path length; however this
treatment oversimplifies the problem, where the electron energy spec-
trum broadens after few inelastic collisions and consequently the en-
ergy straggling plays an important role. Thus, in order to take into
account the energy straggling we can express Eq. (5) with the following

relation:
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where eV is the initial electron energy, while ∂σi(E,W)/∂W is the dif-
ferential inelastic scattering cross section which expresses the prob-
ability of an electron of energy E to lose energy W in an inelastic col-
lision. In the literature several approaches have been proposed to
describe the straggling distribution as a function of the path travelled
by charged particles, as the Gaussian model or the Landau distribution
[27]. These models, however, suffer from some limitations, as the low
accuracy at high travelled path and the difficulty in including the
multilayer geometry in the calculation; for this reason we decided to
adopt the convolution method which is widely regarded as the most
accurate approach to calculate the exact theoretical straggling dis-
tribution, being only limited by the accuracy of the numerical solution
and the uncertainty on the knowledge of the differential inelastic
scattering cross section.

The convolution method consists in calculating via a numerical
method the energy spectrum after a given path Δ(ρs), as the sum of the
energy loss spectra due to nic inelastic collisions, multiplied for the
related probability, given by the Poisson distribution.

In detail, the treatment is based on the calculation of the mass in-
elastic mean free path:
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And then calculating the mean number of inelastic collision in a
given mass path length as nic= Δ(ρs)/ρλic. Thus, starting from an initial
monoenergetic distribution, after nic collisions the energy spectrum will
be given by the nic-fold convolution of the differential inelastic cross
section:

= −w E δ E eV( ) ( )0
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And taking into account also the statistics of collision number,
namely the Poisson distribution, we finally obtain the equation that
describes the electron energy straggling:

∫ ∑+ ∆ = ′ ′ ′
=

∞ −
g ρs ρs E g ρs E n e

k
w E dE( ( ), ) ( , )

!
( )

E

k
ic

k n
k

0 0

ic

(11)

It should be noted that this equation is coupled with the spatial
transport Eq. (6) because of the multilayer geometry, which is ad-
dressed in detail in Section 2.3.

2.2. Spatial advection-diffusion model

As stated in the first part of Section 2.1, the described transport
model enables to calculate the electron distribution function only on
one spatial dimension, the sample depth; nevertheless, in order to
evaluate the lateral EDS resolution, it is of high interest to retrieve
information about the electron radial distribution and, consequently,
about the X-ray generation radial distribution.

This is done by solving another differential equation which is ob-
tained by a hybrid fluid-kinetic approach, considering the electrons as a
fluid in cylindrical coordinates, with advection and diffusion coeffi-
cients, variable in space, which are retrieved from the f and g dis-
tributions of the kinetic approach.

Accordingly, the continuity equation, ∂ ∂ = −∇∙
→

n t j/ , where n is the
electron spatial distribution along the depth z and the radius r and

→
j is

the electron current, can be expressed in cylindrical coordinates as ∂n/
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∂t=− ∂jz/∂z− 1/r∂/∂r(r jr).
If we take into account the fact that the currents depend on time and

space and we change the time coordinate into the mass path ρs and the
spatial coordinates into the mass spatial coordinates ρz and ρr, we ob-
tain:
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( )
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( )
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where n is the electron spatial distribution along the depth and the mass
radius ρr and

→
j is the electron current which is spatial and path de-

pendent.
The problem is then to retrieve jz and jr from the knowledge of f. The

net current along the depth direction depends on the angular dis-
tribution of electrons at a given depth and is derived as the projection of
the distribution along the mass depth axis:

∫=j ρz ρr ρs n ρz ρr ρs f ρz θ ρs cosθdθ( , , ) ( , , ) ( , , )z
π

0 (13)

In this treatment we should also take into account the azimuthal
angle distribution, which is uniform, in the calculation of the projection
integral, however we neglect it for the sake of simplicity and also be-
cause the final result is not highly affected. It should be noted that in
this treatment a(ρz)= ∫ 0

πf(ρz,θ,ρs)cosθdθ acts as a depth-dependent
advection term. On the other hand, the radial electron current is not
due to advection, because the angular distribution is symmetric and
∫ −π

πf(ρz,θ,ρs)sinθdθ is equal to 0; consequently, the radial current is
due to diffusion and is calculated by:

∫= −
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The term dr∫ 0
πf(ρz,θ,ρs)sinθdθ=D(ρz) acts as a diffusion factor in

the final form of the equation:
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Once this advection-diffusion equation is solved it is possible to
retrieve the radial distribution of X-rays generation which is the func-
tion needed for the estimation of the lateral spatial resolution of EDS
measurements. Similarly to the ϕ(ρz), it is obtained by an integration
over all the variables except the radial one, with the ionization cross
section multiplied for the fluorescence yield as the weight function:

∫ ∫ ∫=ψ ρr ωN
A

n ρz ρr ρs g E ρs E d ρz d ρs dE( ) ( , , ) ( , )Σ ( ) ( ) ( )av

r

eV ρs ρs

i
0 0 0

R R

(16)

Consequently, the radial resolution ∼ρr can be defined as the radius
at which the X-ray intensity is reduced by a factor e, namely

=∼ψ ρr ψ e( ) (0)/ . The calculated resolution is a crucial parameter in the
characterization of films with high roughness or with varying compo-
sition, in fact the transport model is based on the hypothesis of τ and CF,

k varying slowly with respect to the lateral resolution. Consequently the
condition ∂ ∂ ≪∼ρr τ τ ρr/ · / 1 must be fulfilled.

2.3. Numerical solution

The Eqs. (6) and (11) are coupled and their solution is carried out
numerically at the same time. The Eq. (6) is solved with an explicit
finite difference scheme: a first order accuracy upwind scheme on the ρz
axis and a centered second order accuracy scheme on the θ axis [28].
The scheme is solved onto the grid ρz× θ, with 80×40 cells over the
ranges [0,ρsR]× [0,π], with the following initial and boundary con-
ditions:

= =f ρz θ ρs δ ρz δ θ at ρs( , , ) ( ) ( ) 0

= = ≤ < >f ρz θ ρs at ρz nd θ π and ρs( , , ) 0 0 a 0 /2 0

= =f ρz θ ρs at ρz ρs( , , ) 0 R

∂
∂
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f ρz θ ρs

θ
at θ π

( , , )
0 0,

(17)

The first condition is the initial one, where electrons are all at the
surface point without angular dispersion; the meaning of the second
condition is that there is not injection of new electrons at the surface
after the initial ‘time’ (when ρs=0), while it is possible to have elec-
trons escaping from the surface at any ‘time’ (f(ρz,θ,ρs)≠ 0 at ρz=0
and π/2 < θ≤ π and ρs > 0); the third condition imposes that the
electron distribution function vanishes at the electron range and the
fourth condition expresses that the net distribution angular flux is null
at the boundaries, because of the angular symmetry.

In order to assure stability to the method, some shrewdness must be
carried out. In fact, the electron flow direction changes in the θ axis in
correspondence to the π/2 value and so also the direction of the finite
derivative in the ρz axis (first term on the right hand side of Eq. (6))
must change at that grid line.

In addition, it should be noticed that the second term of the right
hand side of Eq. (6) plays the role of a diffusion term with a not-con-
stant coefficient 1/ρλ ρzĒ( )tr in ‘time’ and space, which increases dra-
matically when the energy decreases, namely when ρs increases; to
ensure the numerical scheme stability, the Courant-Friedrichs-Lewy
condition must be fulfilled at each step, namely introducing a variable
Δ(ρs) step which decreases with the path length: Δ(ρs) < (1/Δ(ρz)+ 2/
(ρλtr)maxΔθ2)−1 [28].

The solution in a multilayer geometry is accounted by changing
with a piecewise function the value of the ρλ ρz E1/ ( , )tr coefficient along
the ρz axis. Nevertheless, if the jump discontinuity is too high, some
instabilities can arise; for this reason we have expressed all the vari-
ables as the mass ones, in a way that the differences of film and sub-
strate densities do not contribute to this discontinuity and make the
solution method stable.

The numerical solution of Eq. (11) is straightforward and is carried
out over the energy grid, uniformly spaced by 0.05 keV. However it
should be noted that in the film-substrate geometry we have to distin-
guish the energy distributions in the different layers, because of their
different energy loss, and we have to evaluate the g functions for each
layer, namely gF in the film and gS in the substrate; in addition, it must
be also considered that the flow of electrons from one layer to another
one tend to mix the energy spectra. This phenomenon is taken into
account calculating the fraction of electrons, rF and rS, respectively
coming from the film to the substrate and from the substrate to the film
at each path step:

∫

∫ ∫
=r ρs

f τ θ ρs θ θdθd ρz

f ρz θ ρs θdθd ρz
( )
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π
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0 0

π
2

(18)

We first calculate the unperturbed energy distributions in the film
and the substrate, gS/F0; then we take into account the mixing phe-
nomenon by averaging the film and substrate distributions by the
fractions rF and rS:

= − +g ρs E r ρs g ρs E r ρs g ρs E( , ) (1 ( )) ( , ) ( ) ( , )F F F S S
0 0

= − +g ρs E r ρs g ρs E r ρs g ρs E( , ) (1 ( )) ( , ) ( ) ( , )S S S F F
0 0

(19)

Once the electron distribution, F= fg, is calculated, it is possible to
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calculate the ϕ(ρz) functions for both the film and the substrate with Eq.
(2), remembering that also the microscopic ionization cross section and
the fluorescence yield are described by piecewise functions.

As we can see from the example in Fig. 2a, the model enables to
calculate the ϕ(ρz) functions in a multilayer geometry with a good
agreement with respect to the PENEPMA Monte Carlo code, with two
main advantages, namely the faster calculation (about 1min for our
model against about 2 h for the Monte Carlo code) and the smooth
feature of the analytical curve. In addition, it is possible to observe the
perturbation in the distributions due to the multilayer geometry with
respect to the single layer case. For example, in the shown case, the
electron transport features change because of the jump discontinuity in
the ρλ ρz E1/ ( , )tr coefficient at the τ interface; the diffusion coefficient is
higher in the substrate than in the film, then the electrons tend to be
more backscattered by the substrate toward the film, and thus the film
electron density and ϕ(ρz) distribution increases, with respect to the
single layer case.

Finally, once the film mass thickness and composition is fixed, the
knowledge of the ϕ(ρz) functions in the film-substrate geometry can be
used to simulate the values of the Kk, j ratios; the problem is then to
minimize the difference between the calculated ratios with the mea-
sured ones by EDS,∼Kk j, , namely to minimize the chi squared factors:

= −∼χ K K( )k j k j k j
2

, , ,
2

(20)

Two different algorithm can be used: the first one is based on the
gradient descent algorithm [29] which consists of calculating the gra-
dients of the simulated Kk, j ratios with respect to the mass thickness
and composition and then to obtain, with a linear regression, the next-
iteration values of mass thickness and composition; with few iterations
this method enables to reach low values of χ k j

2
, and obtain a mea-

surement of τ and CF, k.
The second algorithm consists of calculating the Kk, j ratios over a

regular grid of mass thickness and composition, in order to obtain a
discrete function Kk, j(τm,Ck

n,Cj
p); then this function is interpolated

cubically to retrieve the values of mass thickness and composition
which minimize the χ k j

2
, . The first algorithm is more useful for a fast

calculation of film mass thickness and composition in a standard single
point measurement, while the second algorithm is necessary when we
want to obtain a two-dimensional mass thickness and composition
mapping, as the case shown in Section 4.3.

Finally, for the spatial distribution problem, we can solve Eq. (15) in
parallel to Eqs. (6) and (11) with the same numerical method described
for Eq. (6), namely the upwind Euler method for the advection term and
the centered second finite difference method for the diffusion term; the
boundary conditions are straightforward and the initial condition on n
is given by the electron beam radial distribution. Thanks to this step it is
possible to numerically retrieve the X-rays generation radial distribu-
tion function ψ(ρr) with Eq. (16) and to predict the radial resolution, as
shown in Fig. 2b.

We implemented the whole model, consisting in the electron
transport solution, in the ϕ(ρz) and ψ(ρz) functions prediction and in the
algorithm for the evaluation of film mass thickness and composition of
film-substrate systems, in a MATLAB® application, which requires a low
calculation time (a single measurement calculation runs in few minutes
in a standard computer), called “EDs for areal Density & composItion
Evaluation” (EDDIE).

3. Model physical parameters

The models described in Section 2 rely on a number of different
physical parameters and, in order to obtain enough accurate outputs,
namely the mass thickness and composition, they must be calculated
with high precision models or database. In this section we describe the
literature works that we have chosen to rely on, while in Section 4.1 we
describe how the inaccuracy of these parameters reflects on the in-
accuracy of the outputs with an uncertainty and sensitivity analysis.

3.1. Electron elastic scattering

As described in the Section 2, one of the more important physical
input that enables to describe the electron multiple elastic scattering
process is the transport mean free path, which appear in Eq. (6).

We rely on the calculations based on the solution of the Dirac
equation, in the approximation of ‘static field’, which means that the
atomic electron density has spherical symmetry, and the differential
cross section is evaluated with the relativistic Dirac-Hartree-Fock po-
tential, that is considered the more reliable model for the atomic po-
tential [30,31]. The static field approximation is considered very reli-
able in this case, because the momentum transfer is higher for the
collisions with the close bounded electrons; in this way, the solid state

Fig. 2. Figure (a) shows the calculated ϕ(ρz) distributions by the electron transport model and by PENEPMA (with 2 ⋅ 106 trajectories) at an accelerating voltage of 10
kV, in 3 different geometries: a single semi-infinite layer of bulk Carbon by our model (blue dashed curve), a single semi-infinite layer of bulk Silicon by our model
(orange dashed curve), a film-substrate geometry made by a bulk density, 200 nm thick, Carbon film on a semi-infinite Silicon substrate by our model (blue and
orange continuous curves) and by PENEPMA (violet and red points curves). It should be noted that in the film-substrate geometry the ϕ(ρz) functions are perturbed
with respect to the single semi-infinite samples. In addition, the distribution calculated with our model is in good agreement with ones calculated with the Monte
Carlo code. Figure (b) shows the calculated ψ(ρr) distributions by the advection-diffusion equation at an accelerating voltage of 10 kV, with 20 nm electron beam
diameter, in a film-substrate geometry made by a bulk density, 200 nm thick, Carbon film and semi-infinite Silicon substrate. The radial resolution values, ∼ρr , are
reported on the graph. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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potential, which greatly varies from one material to another, can be
neglected and the multiple scattering phenomenon is independent from
the aggregation state.

The values of the transport mean free path calculated from the
Dirac-Hartree-Fock differential cross section are tabulated in a recent
NIST database [32], that covers the primary electron energy range of
0.05− 300 keV.

3.2. Electron inelastic scattering

The other crucial aspect of the model is the electron energy loss
described by Eq. (11); so it is of great importance to have a reliable
model for the differential inelastic cross section ∂σi(E,W)/∂W.

Some analytical model for the inelastic cross section exist, but only
for quite simple systems, like Hydrogen or free electron gas [33], and
are nevertheless complex to calculate; thus, it seems to us reasonable to
make use of a semiempirical model which combine a sufficient grade of
accuracy with the possibility to obtain the differential inelastic cross
section for any kind of material with low calculation time [34].

3.3. X-rays generation, attenuation and detection

Finally, it is fundamental for the calculation of X-ray generation in
the sample, to know the electron microscopic ionization cross section
σion(E) and the fluorescence yield factor ω, which appear in Eq. (2); and
it is of equal importance to know the X-rays mass attenuation coeffi-
cient μ/ρ and the detection efficiency ε, present in Eq. (1). We used a
recent analytical formula for the ionization cross section [35] that ap-
proximate with 1% of error the theoretical ionization cross section
calculated from the relativistic distorted-wave Born approximation
(DWBA) which consistently account the effect of distortion of the pro-
jectile wave functions caused by the electrostatic atom field and the
exchange effects which arise from the indistinguishability of the pro-
jectile and the target electrons. The resulting ionization cross sections
have been compared to available experimental data, to other theore-
tical calculations and to empirical and semi-empirical formulas,
showing that the DWBA provides a better description of recent mea-
surements.

The fluorescence yield ω, defined as the probability that an ionized
atom emits a characteristic X-ray, is given by empirical fits of experi-
mental data as a function of the atomic number and the ionized shell.
Some reliable databases exist that collect all these data [36,37], and we
decided to use the most recent one. Nevertheless, some uncertainties
still exists for low atomic number elements because the few experi-
mental data obtained in that range quite differ from the tabulated data
of the recent databases [38,39]; we noticed that for Z≤ 8 the older
database values for fluorescence yield are more consistent with ex-
perimental data, for this reason we decided to integrate these values in
the more recent database.

The X-rays mass attenuation coefficients μ/ρ are tabulated for all
elements over the energy range 0.05 – 30 keV [40] and their values are
considered very reliable because they are based on a large quantity of
experimental data and established theoretical calculations.

The X-rays detection efficiency ε depends on the intrinsic detector
energy response and the detector window transmittance; these quan-
tities depend on the characteristic X-ray energy and nominal values are
given by the detector manufacturer. Nevertheless, these values vary for
each detector and they can also change with the aging of the instru-
ment; for this reason some uncertainty should be expected on this
parameter. In order to reduce this uncertainty some methods could be
exploited in the future: the true detector efficiency curve could be re-
trieved by measuring the EDS spectrum of an engineered reference
sample at a fixed accelerating voltage [41,42].

4. Results and discussion

The model for the film mass thickness and composition evaluation,
explained in Sections 2 and 3, is subjected to an uncertainty and sen-
sitivity analysis, in the first part of this section, with the objective of
estimating the τ and CF, k measurements error bars and to address the
physical parameters which contribute more to the measurement un-
certainty, in order to pave the way to further improvements.

In the second part the new technique is experimentally validated by
the comparison of measurements with other standard and reliable
techniques. We prepared various film-substrate samples and we mea-
sured the film mass thickness and compositions with standard techni-
ques, namely the EDS for the composition measurements (carried out at
5 kV) and the X-Ray Reflectometry (XRR) and standard weighting
techniques for the mass thickness evaluation (see Section 6 for a de-
scription of the deposition and characterization techniques). In parti-
cular the XRR is a standard technique which enables to calculate with
high accuracy the electronic density and the thickness of planar thin
films and it consists in the collection of monochromatic X-rays reflected
by the multilayer sample.

The samples film and substrate compositions were chosen in order
to cover a wide range of atomic numbers (ZF=6, 7, 8, 74; ZS=14, 42):
Sample 1 is composed of a compact metallic, 64 nm thick, Tungsten film
and a metallic Molybdenum substrate, Sample 2 is composed of a
compact, 99 nm thick, Carbon film and a Silicon wafer substrate,
Sample 3 is an amorphous, 102 nm thick, Tungsten film with Oxygen
inclusions on a Molybdenum substrate and Sample 4 is a porous
amorphous, 135 nm thick, Tungsten, Oxygen and Nitrogen based film
on a Molybdenum substrate.

Kk, j ratios were calculated from EDS measurements of each sample
at different accelerating voltages; the measurement conditions were
fixed to 120 s acquisition time and we selected the K lines for Carbon,
Oxygen, Nitrogen and Silicon, while we used the sum of Lα and Lβ lines
for Molybdenum and Mα line for Tungsten.

Finally, we give in Section 4.3, a sample application of the tech-
nique: the mapping of mass thickness and composition of a nanos-
tructured ultra-low density and high roughness film, which is difficult
to characterize with standard techniques.

4.1. Uncertainty and sensitivity analysis

The technique uncertainty with respect to the physical parameters
errors was investigated through an uncertainty and sensitivity analysis
on the underlying model.

Firstly we carry out the analysis through a Monte Carlo method
[43], using as inputs the experimental ∼Kk j, ratios measured from
Sample 1 at the accelerating voltages of 10, 20, 30 kV. We assume a
gaussian distribution function on physical parameters errors, with
reasonable standard deviation values assumed from the relative cited
literature works and summarized in Table 1, and a Poisson distribution
on the∼Kk j, ratios error; then we extract at each Monte Carlo iteration a
different value for each physical parameter following its error dis-
tribution, and we obtain different τ and CF, k values at each iteration.
With a sufficiently high number of iterations (in the shown case
Nit=200) we achieve to find an uncertainty distribution on the output
values and consequently we can estimate the standard deviation,
namely the error bar.

From the results of Table 1, it should be noted that higher accel-
erating voltage measurements intrinsically have higher error values.
Moreover, we carry out the output variance decomposition in order to
determine which physical parameters contribute more to the output
uncertainty. For example, in the case of Table 1, the parameters that
contribute more to the mass thickness error are the inelastic scattering
cross section, which decreases with voltage, the ionization cross section
and the fluorescence yield, which increase with accelerating voltage;
thus, to further improve the model, the accuracy of these three
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parameters should be increased.
Moreover the Monte Carlo sensitivity analysis enables to estimate

the linearity of the model with respect to the errors; in the above
mentioned case, we see that this factor is always near 1 and we can
reasonably conclude that the model error behaviour is quite linear. This
useful result can be exploited to simplify the uncertainty analysis, in
fact in the linear error models the partial derivative analysis can be
carried out, which is simpler and faster to perform compared to the
Monte Carlo method. Thus, the error bars reported in Section 4.2
measurements are obtained with this method.

In order to confirm the results of the Monte Carlo variance de-
composition we carry out the partial derivative variance decomposition
also on Sample 2. The results, summarized in Table 2, confirm that the
errors increase with the measurement accelerating voltage; in addition
it should be noted that also in this case the parameters which are more
significant for the error generation are the inelastic cross section, the
ionization cross section, the detector efficiency and the fluorescence
yield. In addition, we see a strong correlation of the increasing un-
certainty with the ionization cross section, as the Monte Carlo analysis
highlights for the case of Sample 1. For this reason we expect that in-
creasing, with new measurements and better models, the accuracy of
the ionization cross section will result in a strong improvement of the
new technique.

4.2. Benchmarks

As described in Section 2, the new method, in contrast to all the
EMPA-related literature, overcomes the need of a reference sample,
once the substrate composition is known. All the measurements are
consequently taken onto only the analysed samples, reducing auto-
matically the number of EDS measurements by a factor 2.

In order to validate the technique reliability we made EDS

measurements at many values of accelerating voltage for each sample
and we collected the results in Figs. 3, 4, 5. For the Samples 1, 2, 3
(Figs. 3, 4) we used the XRR technique measurements as a benchmark
thanks to its high precision and the data reported on the abscissa is the
mass thickness, while for Sample 4 we used a standard weighting
procedure, because the high roughness of this sample prevents the use
of XRR, and the reported data in the abscissa is the density; because the
new technique enables to retrieve the mass thickness, the density was
calculated by ρ= τ/t, where the film thickness t was measured with
cross section SEM image.

All the measured samples prove that the new method mass thickness
measurements agree with the benchmarks inside the error bars, calcu-
lated with the uncertainty analysis. We see that at low voltages mea-
surements there is a correlation between the mass thickness and the
accelerating voltage and we believe that it is caused by the effect of the
inaccuracy of inelastic cross sections at low energy values; this point is
justified by the fact that at low voltages the sensitivity analysis shows a
prevailing role in error generation by this physical parameter (see
Tables 1 and 2). Nevertheless all the measurement fluctuations with
respect to the accelerating voltage are all less than the error bars; ac-
cordingly, it is reasonable to state that the new technique can be used,
at the limit, with only one accelerating voltage measurement, as op-
posed to the most existing commercial EMPA software which need
many voltages to obtain accurate results.

The mass thickness errors, calculated by the uncertainty analysis,
show lower absolute values for the case of Sample 2 with respect to the
other ones. This effect is probably caused by lower values of accel-
erating voltages used for Sample 2 characterization (as explained in
Section 4.1, the error slowly increases with the accelerating voltages),
and by the lower mass thickness of the film (lower by a 1/5 factor with
respect to the other samples). In all the cases, the mass thickness errors
are higher by at least of one order of magnitude with respect to XRR
errors, but it should be taken into account that the method does not
suffer from limitations due to film roughness, as for the case of Sample
4 which could not be characterized by XRR; in addition, our technique
enables to retrieve at the same time the film composition, which is not
determined by XRR.

Moreover, we point out that the error bars values lie in the range
2− 20μg/cm2, in all the shown cases. This value is comparable to the
resolution of nuclear standard techniques (~10μg/cm2) such as
Rutherford Backscattering Spectrometry (RBS) [44] and Time Of Flight
– Elastic Recoil Detection Analysis (TOF-ERDA) [45].

Finally, it should be noted that the composition measurements of
Sample 3 and 4 (Figs. 4 and 5) are in agreement with the standard EDS
composition measurement within few percentage points. Nevertheless,
there are some little deviations from the benchmark for higher accel-
erating voltage values; the variance decomposition analysis (data not
shown) indicates that, also in this case, the ionization cross section
increases with the accelerating voltage and it is responsible for about
the 50% of the error. In addition, we observe that the errors are higher
for the Sample 4 with respect to Sample 3, probably for the higher
number of elements in that film. Thus, we believe that the knowledge of
the ionization cross section parameter should be enhanced in order to
finely characterize the composition of films with a large number of
elements.

4.3. Mass thickness and composition mapping: an example

In this section we give an example application of the technique
explained in Sections 2 and 3: the mapping of mass thickness and
composition of a nanostructured ultra-low density Carbon and Oxygen
based film (called Carbon foam [46]). The analysed film was deposited
onto a Silicon substrate and has a mean density near 20 mg/cm3 and a
mean thickness of 5 μm with a very high roughness (± 3 μm over the
μm lateral scale), which make this kind of material very difficult to
characterize with standard techniques, such as XRR or high sensitivity

Table 1
Results of the Monte Carlo uncertainty and sensitivity analysis (Nit=200)
carried out with inputs from Sample 1, with accelerating voltage equal to 10,
20, 30 kV. On the last column the assumed relative standard deviations on the
parameters are shown.

Accelerating voltagekV [kV] 10 20 30

Output std. deviation [μg/cm2] 14.9 17.5 18.5
Model linearity 1.07 0.98 1.04

Variance decomposition 10 20 30 Assumed relative std deviation

Elastic scattering CS 0.01 0.03 0.00 0.10
Inelastic scattering CS 0.50 0.15 0.11 0.20
Ionization CS 0.39 0.61 0.58 0.10
Fluorescence yield 0.03 0.14 0.11 0.05
Detector efficiency 0.06 0.02 0.13 0.05
Photon attenuation 0.01 0.04 0.07 0.025
Poisson uncertainty 0.00 0.01 0.00 0.01

Table 2
Results of the partial derivative variance decomposition analysis, carried out
with inputs from Sample 2.

Accelerating voltage [kV] 4 5 6 8 10 12 14 16

Output std. deviation [μg/
cm2]

2.1 2.5 2.8 3.7 4.1 4.8 4.5 5.9

Variance decomposition
Elastic scattering CS 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05
Inelastic scattering CS 0.77 0.58 0.50 0.37 0.42 0.40 0.33 0.11
Ionization CS 0.14 0.23 0.31 0.43 0.35 0.39 0.37 0.35
Fluorescence yield 0.04 0.07 0.09 0.09 0.10 0.09 0.11 0.18
Detector efficiency 0.04 0.07 0.09 0.09 0.10 0.09 0.11 0.18
Photon attenuation 0.00 0.02 0.01 0.01 0.01 0.01 0.05 0.11
Poisson uncertainty 0.00 0.02 0.01 0.01 0.02 0.02 0.02 0.02
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Fig. 3. Figure (a) shows the mass thickness of Sample 1 (Tungsten, 64 nm thick, film onto Molybdenum substrate), measured by our method (points in blue) at
different accelerating voltages, and by the XRR (line in black). Figure (b) shows the mass thickness of Sample 2 (Carbon, 99 nm thick, film onto Silicon substrate),
measured by our method (points in blue) at different accelerating voltages, and by the XRR (line in black). On the graphs the mean value obtained by our method, the
mean value of its error bars, the value measured by XRR and its error are displayed. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Figure (a) shows the mass thickness and figure (b) the composition of Sample 3 (Tungsten with Oxygen inclusions, 102 nm thick, film onto Molybdenum
substrate), measured by our method (points in blue and orange) at different accelerating voltages, and by the XRR (line in black) and EDS (blue and orange dashed
lines). On the figure (a) the mean value obtained by our method, the mean value of its error bars, the value measured by XRR and its error are displayed. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Fig. (1) shows the density and figure (b) the composition of Sample 4 (Tungsten with Nitrogen and Oxygen inclusions, 135 nm thick, film onto Molybdenum
substrate), measured by our method (points in blue, orange and yellow) at different accelerating voltages, and by the standard weight measurement (line in black)
and EDS (blue, orange and yellow dashed lines). On the figure (a) the mean value obtained by our method, the mean value of its error bars, the value measured by
XRR and its error are displayed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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balances.
The capability of measuring EDS map from a surface over a grid was

exploited to retrieve two-dimensional profiles of Kk, j ratios with a fixed
accelerating voltage value (5 kV), which are used, through our method,
to retrieve a film mass thickness and composition maps. Fig. 6 shows
the mass thickness and composition measurements in comparison with
the relative SEM image; it should be observed that the method enables
to obtain a mass thickness map (with pixel dimension equal to 300 nm)
which is in agreement with the qualitative information given by the

electron microscope image. The radial resolution ∼ρr , estimated by the
radial distribution Eq. (16), with beam diameter equal to 10 nm, is
about 470 nm, which is comparable to the pixel dimension; as the mass
thickness map highlights the film roughness features, we can conse-
quently state that the radial resolution estimation is in agreement with
the experimental data. In addition, we can retrospectively verify the
hypothesis of slowly varying mass thickness, which is necessary for the
exploitation of the method: ∂ ∂r t t r μm~/ · / ~3 /

= ≪μm· nm μm5 470 /5 0.06 1 and, consequently, the hypothesis is sa-
tisfied.

Finally, we point out that, in general, the radial resolution depends
largely on the electron initial energy and the film density; with proper
conditions, as low accelerating voltage (< 10 kV) and bulk density
films (> 1 g/cm3) the radial resolution can reach much lower values,
down to values limited only by the electron beam diameter.

5. Conclusions

In conclusion, we have described a new method for the evaluation
of thin films mass thickness and composition from EDS data, which is
very appealing because it is non-destructive, it needs a common ex-
perimental apparatus, it has a high spatial resolution, it is not affected
by film roughness and it does not need a reference sample. The method
relies on a numerical solution of a simplification of the Boltzmann
transport equation for electrons, based on reasonable assumptions. This
theoretical approach enables us to calculate the ϕ(ρz) function, which
describes the distribution of X-ray generation with depth of the sample,
also in a film-substrate geometry, with high accuracy. Thanks to this
fact this method for the evaluation of mass thickness and composition
does not need a reference sample and multiple voltages measurements,
and the implemented software, called EDDIE, can run in standard
computers in a few minutes. We also point out that the derived method
could be implemented in the future also in more complex geometries,
for example in more than two layers samples, or with depth-dependent
composition.

The method was validated with benchmarks characterized by
standard techniques and an uncertainty and sensitivity analysis was
carried out in order to estimate the errors relative to the mass thickness
and composition. The analysis highlighted that the mass thickness
measurement errors lie in the range 2− 20 μg/cm2 which is comparable
to other nuclear standard techniques (such as RBS and ERDA), while the
sensitivity analysis indicated that the method accuracy could be
strongly enhanced by increasing the accuracy of the electron ionization
cross sections and the electron inelastic cross sections.

Finally, we have shown an example application of the method: we
obtained accurate mass thickness and composition maps of an ultra-low
density nanostructured film, with a spatial resolution properly pre-
dicted from our model. Thanks to the demonstrated capabilities of the
technique and to its high accuracy, we believe that this new method
should play a role as a new standard technique for mass thickness and
composition determination.

6. Materials & methods: deposition and characterization
techniques

The samples were produced by the deposition of thin films by the
Pulsed Laser Deposition technique (PLD). For Samples 1, 3, 4 we used
the second harmonic, λ=532 nm, pulse of a Nd:YAG laser, duration
5 – 7 ns and repetition rate 10 Hz, while for Sample 2 we used the
fundamental, λ=1054 nm; the beam was directed on a 2 in Tungsten
target, for Samples 1, 3, 4, and pyrolytic graphite target, for Sample 2,
with 45° angle of incidence. The ablated species expanded from the
target to a Silicon substrate distant 5 cm from the target, for Sample 2,
and a Molybdenum substrate distant 7 cm from the target, for Samples
1, 3, 4, kept at room temperature, inside a home-made vacuum
chamber evacuated by a primary scroll pump and a turbo-molecular

Fig. 6. Fig. (a) shows a SEM image of a Carbon foam film; figure (b) shows the
film mass thickness map and figure (c) the Carbon atomic fraction map re-
trieved with the EDDIE software in the measurement condition of 5 kV accel-
erating voltage and 300 nm pixel dimension. The spatial resolution is sufficient
to highlight the high roughness feature of the film.
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pump, reaching a base pressure of 10−3 Pa. The pulse energy and spot
were varied for the different samples and the fluence on target was
fixed at 11.3 J/cm2 for Samples 1, 3, 4 and 1.2 J/cm2 for Samples 2. We
used two different gasses to fill the chamber, N2 and He; in particular,
Sample 1 was produced in vacuum (10−2 Pa), Sample 2 was produced
with 20 Pa of He, Sample 3 with 70 Pa of He and Sample 4 with 5 Pa of
N2.

The ultra-low density Carbon foam film was deposited by the fem-
toseconds PLD technique which exploits the fundamental frequency,
λ=800 nm, of a Ti:Sa laser, duration 80 fs and repetition rate 1 kHz.
The laser pulses ablated a pyrolytic graphite target with 45° angle of
incidence and a fluence of 0.16 J/cm2 and the ablated species were
collected onto a Silicon substrate, distant 7 cm from the target, in an Ar
gas atmosphere at 100 Pa.

The SEM cross section measurement and the composition EDS
measurements were taken with a Zeiss Supra 40 field emission SEM in
combination with an Oxford Instruments Si(Li) detector.

For the mass thickness benchmark measurements of Sample 1, 2, 3
we exploited the X-Ray Reflectometry technique (XRR), which consists
of the collection of the reflected X-rays (reflected vector) from the
sample originated by a monochromated X-ray beam (incident vector).
Experimentally, this is achieved as follows. X-rays generated from a Cu
source (40 kV, 0.9 mA) are monochromated by a parabolic mirror to
obtain a parallel X-ray beam of wavelength λ=0.154 nm (Cu Kα). The
incident X-ray beam is sized down to 6 mm×0.1 mm, with the larger
value in the transverse direction with respect to the beam axis, by slits
to minimize spill-off from sample edges. The reflected X-rays are col-
lected with a point Na:Tl solid state scintillator, with acceptance slits of
0.2 mm, to minimize the collection of scattered X-rays in non-reflection
condition, positioned at a distance of 40 cm from the sample stage.
Measurements are collected in a symmetric Ω=2Θ geometry, where Ω
is the angle between the incident X-rays and the sample plane and Θ is
the angle between the sample plane and the detector, from
Ω=2Θ=0° to Ω=4 ° , 2Θ=8° in steps ΔΩ=0.01° and
Δ(2Θ)= 0.02° with 2 s or 10 s collection time for each point. Data are
fitting with MAUD software, which implements an algorithm based on
matrix formalism model corrected by a Croce-Nevot factor. In parti-
cular, the electron density ρe is obtained from the critical angle Θc,
related to the critical vector qc. For Cu Kα X-ray emission qc and ρe are
linked by the equation =− −q ρ(Å ) 0.0375 (Å )c e

1 3 [47–51].
For the density benchmark measurement of Sample 4 a standard

weighting procedure was made through a high precision balance and
the density was calculated dividing the mass from the film volume.

Acknowledgements

This project has received funding from the European Research
Council (ERC) under the European Union's Horizon 2020 research and
innovation programme (ENSURE grant agreement No. 647554).

Competing interests

The authors declare no conflict of interest.

Author contributions

A.P. developed and implemented the model, analysed the data,
wrote the manuscript and produced the tables and figures. A.M. and
D.D. produced the analysed samples. A.L. characterized the samples
with XRR and wrote the relative Methods section. M.P. conceived the
project and supervised all the activities. All authors reviewed the
manuscript.

Data availability

The raw EDS data required to reproduce these findings are available
on request. The EDDIE code required to reproduce these findings is
available to download from https://data.mendeley.com/datasets/
ytmyshtn66/draft?a=ee3dbded-7061-4217-a99b-578ade5c62ed.

References

[1] W.E. Sweeney Jr., R.E. Seebold, L.S. Birks, Electron probe measurements of eva-
porated metal films, J. Appl. Phys. 31 (1960) 1061–1064, https://doi.org/10.1063/
1.1735746.

[2] G.H. Cockett, C.D. Davis, Coating thickness measurement by electron probe mi-
croanalysis, Br. J. Appl. Phys. 14 (1963) 813–816, https://doi.org/10.1088/0508-
3443/14/11/320.

[3] J.L. Pouchou, F. Pichoir, Quantitative analysis of homogeneous or stratified mi-
crovolumes applying the model “PAP”, Electron probe quantitation, Springer,
Boston, MA, 1991, pp. 31–75, , https://doi.org/10.1007/978-1-4899-2617-3_4.

[4] R. Castaing, Application of Electron Probes to Local Chemical and Crystallographic
Analysis (Ph. D. Thesis), University of Paris, 1951.

[5] Y.G. Lavrent'Ev, V.N. Korolyuk, L.V. Usova, Second generation of correction
methods in electron probe X-ray microanalysis: approximation models for emission
depth distribution functions, J. Anal. Chem. 59 (2004) 600–616, https://doi.org/
10.1023/B:JANC.0000035269.96076.d2.

[6] J.L. Pouchou, X-ray microanalysis of stratified specimens, Anal. Chim. Acta 283
(1993) 81–97, https://doi.org/10.1016/0003-2670(93)85212-3.

[7] P. Willich, D. Obertop, H.J. Tolle, Quantitative electron microprobe determination
of oxygen in metal layers covered by surface oxide films, X-Ray Spectrom. 14
(1985) 84–88, https://doi.org/10.1002/xrs.1300140209.

[8] C. Merlet, A new quantitative procedure for stratified samples in EPMA,
Proceedings of the 29th Annual Conference of the Microbeam Analysis Society,
1995, pp. 203–204.

[9] STRATAGem, Thin Film Analysis Software, Thickness Determination, Available at
http://www.samx.com/microanalysis/products/stratagem_us.html.

[10] X. Llovet, C. Merlet, Electron probe microanalysis of thin films and multilayers
using the computer program XFILM, Microsc. Microanal. 16 (2010) 21–32, https://
doi.org/10.1017/S1431927609991218.

[11] I. Prencipe, D. Dellasega, A. Zani, D. Rizzo, M. Passoni, Energy dispersive X-ray
spectroscopy for nanostructured thin film density evaluation, Sci. Technol. Adv.
Mater. 16 (2015) 025007, , https://doi.org/10.1088/1468-6996/16/2/025007.

[12] P.J. Statham, Feasibility of X-ray analysis of multi-layer thin films at a single beam
voltage, IOP Conference Series: Materials Science and Engineering, vol. 7. No. 1,
IOP Publishing, 2010, , https://doi.org/10.1088/1757-899X/7/1/012027.

[13] P. Hovington, D. Drouin, R. Gauvin, CASINO: a new Monte Carlo code in C language
for electron beam interaction—part I: description of the program, Scanning 19
(1997) 1–14, https://doi.org/10.1002/sca.4950190101.

[14] H. Demers, N. Poirier-Demers, A.R. Couture, et al., Three-dimensional electron
microscopy simulation with the CASINO Monte Carlo software, Scanning 33 (2011)
135–146, https://doi.org/10.1002/sca.20262.

[15] J. Baro, J. Sempau, J.M. Fernández-Varea, F. Salvat, PENELOPE: an algorithm for
Monte Carlo simulation of the penetration and energy loss of electrons and posi-
trons in matter, Nucl. Instrum. Methods Phys. Res., Sect. B 100 (1995) 31–46,
https://doi.org/10.1016/0168-583X(95)00349-5.

[16] F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE-2008: A code system for
Monte Carlo simulation of electron and photon transport, The Workshop
Proceedings, 2008 http://hdl.handle.net/2117/9265.

[17] X. Llovet, F. Salvat, PENEPMA: a Monte Carlo program for the simulation of X-ray
emission in electron probe microanalysis, Microsc. Microanal. 23 (2017) 634–646,
https://doi.org/10.1017/S1431927617000526.

[18] P. Statham, X. Llovet, P. Duncumb, Systematic discrepancies in Monte Carlo pre-
dictions of K-ratios emitted from thin films on substrates, IOP Conference Series:
Materials Science and Engineering 32 (2012) 012024, , https://doi.org/10.1088/
1757-899X/32/1/012024.

[19] G. Moliere, Theorie der streuung schneller geladener teilchen ii mehrfach-und
vielfachstreuung, Zeitschrift für Naturforschung A 3 (1948) 78–97, https://doi.org/
10.1515/zna-1948-0203.

[20] H.A. Bethe, Moliere's theory of multiple scattering, Phys. Rev. 89 (1953)
1256–1266, https://doi.org/10.1103/PhysRev.89.1256.

[21] D.J. Fathers, P. Rez, Transport equation theory of electron backscattering, Scan.
Electron Microsc. pt 1 (1979) 55–66 https://www.scopus.com/inward/record.uri?
eid=2-s2.0-0018723705&partnerID=40&md5=
d5fe0cd955b77a604ea9b20916f11c7f.

[22] T. Biewer, R. Peter, Energy deposition in thin films calculated using electron
transport theory, J. Appl. Phys. 76 (11) (1994) 7636–7638, https://doi.org/10.
1063/1.357934.

[23] D.B. Brown, R.E. Ogilvie, An electron transport model for the prediction of X-ray
production and electron backscattering in electron microanalysis, J. Appl. Phys. 37
(1966) 4429–4433, https://doi.org/10.1063/1.1708054.

[24] D.B. Brown, D.B. Wittry, D.F. Kyser, Prediction of X-ray production and electron
scattering in electron-probe analysis using a transport equation, J. Appl. Phys. 40
(1969) 1627–1636, https://doi.org/10.1063/1.1657824.

[25] H. Iskef, J.W. Cunningham, D.E. Watt, Projected ranges and effective stopping
powers of electrons with energy between 20 eV and 10 keV, Phys. Med. Biol. 28

A. Pazzaglia, et al. Materials Characterization 153 (2019) 92–102

101

https://data.mendeley.com/datasets/ytmyshtn66/draft?a=ee3dbded-7061-4217-a99b-578ade5c62ed
https://data.mendeley.com/datasets/ytmyshtn66/draft?a=ee3dbded-7061-4217-a99b-578ade5c62ed
https://doi.org/10.1063/1.1735746
https://doi.org/10.1063/1.1735746
https://doi.org/10.1088/0508-3443/14/11/320
https://doi.org/10.1088/0508-3443/14/11/320
https://doi.org/10.1007/978-1-4899-2617-3_4
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0020
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0020
https://doi.org/10.1023/B:JANC.0000035269.96076.d2
https://doi.org/10.1023/B:JANC.0000035269.96076.d2
https://doi.org/10.1016/0003-2670(93)85212-3
https://doi.org/10.1002/xrs.1300140209
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0040
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0040
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0040
http://www.samx.com/microanalysis/products/stratagem_us.html
https://doi.org/10.1017/S1431927609991218
https://doi.org/10.1017/S1431927609991218
https://doi.org/10.1088/1468-6996/16/2/025007
https://doi.org/10.1088/1757-899X/7/1/012027
https://doi.org/10.1002/sca.4950190101
https://doi.org/10.1002/sca.20262
https://doi.org/10.1016/0168-583X(95)00349-5
http://hdl.handle.net/2117/9265
https://doi.org/10.1017/S1431927617000526
https://doi.org/10.1088/1757-899X/32/1/012024
https://doi.org/10.1088/1757-899X/32/1/012024
https://doi.org/10.1515/zna-1948-0203
https://doi.org/10.1515/zna-1948-0203
https://doi.org/10.1103/PhysRev.89.1256
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018723705&partnerID=40&md5=d5fe0cd955b77a604ea9b20916f11c7f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018723705&partnerID=40&md5=d5fe0cd955b77a604ea9b20916f11c7f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018723705&partnerID=40&md5=d5fe0cd955b77a604ea9b20916f11c7f
https://doi.org/10.1063/1.357934
https://doi.org/10.1063/1.357934
https://doi.org/10.1063/1.1708054
https://doi.org/10.1063/1.1657824


(1983) 535–545, https://doi.org/10.1088/0031-9155/28/5/007.
[26] W.S. Werner, Electron transport in solids for quantitative surface analysis, Surf.

Interface Anal. 31 (2001) 141–176, https://doi.org/10.1002/sia.973.
[27] H. Bichsel, R.P. Saxon, Comparison of calculational methods for straggling in thin

absorbers, Phys. Rev. A 11 (1975) 1286–1296, https://doi.org/10.1103/PhysRevA.
11.1286.

[28] L.N. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial
Differential Equations, (1996).

[29] J. Barzilai, J.M. Borwein, Two-point step size gradient methods, IMA J. Numer.
Anal. 8 (1988) 141–148, https://doi.org/10.1093/imanum/8.1.141.

[30] A. Jablonski, F. Salvat, C.J. Powell, Comparison of electron elastic-scattering cross
sections calculated from two commonly used atomic potentials, J. Phys. Chem. Ref.
Data 33 (2004) 409–451, https://doi.org/10.1063/1.1595653.

[31] F. Salvat, A. Jablonski, C.J. Powell, ELSEPA—Dirac partial-wave calculation of
elastic scattering of electrons and positrons by atoms, positive ions and molecules,
Comput. Phys. Commun. 165 (2005) 157–190, https://doi.org/10.1016/j.cpc.
2004.09.006.

[32] A. Jablonski, F. Salvat, C.J. Powell, NIST electron elastic-scattering cross-section
database, NIST Standard Reference Database 64 (2010) 409–451, https://doi.org/
10.1063/1.1595653.

[33] J. Lindhard, A. Winther, Stopping Power of Electron Gas and Equipartition Rule,
Munksgaard, 1964.

[34] F. Salvat, J. Fernández-Varea, Semiempirical cross sections for the simulation of the
energy loss of electrons and positrons in matter, Nucl. Instrum. Methods Phys. Res.,
Sect. B 63 (1992) 255–269, https://doi.org/10.1016/0168-583X(92)95108-4.

[35] D. Bote, F. Salvat, A. Jablonski, C.J. Powell, Cross sections for ionization of K, L and
M shells of atoms by impact of electrons and positrons with energies up to 1 GeV:
analytical formulas, At. Data Nucl. Data Tables 95 (2009) 871–909, https://doi.
org/10.1016/j.adt.2009.08.001.

[36] W.T. Elam, B.D. Ravel, J.R. Sieber, A new atomic database for X-ray spectroscopic
calculations, Radiat. Phys. Chem. 63 (2002) 121–128, https://doi.org/10.1016/
S0969-806X(01)00227-4.

[37] J.H. Hubbell, P.N. Trehan, N. Singh, et al., A review, bibliography, and tabulation of
K, L, and higher atomic shell X-ray fluorescence yields, J. Phys. Chem. Ref. Data 23
(1994) 339–364, https://doi.org/10.1063/1.555955.

[38] W. Hink, H. Paschke, K-shell-fluorescence yield for carbon and other light elements,
Phys. Rev. A 4 (1971) 507–511, https://doi.org/10.1103/PhysRevA.4.507.

[39] K. Feser, K-shell fluorescence yield for beryllium, boron, and carbon, Phys. Rev.
Lett. 28 (1972) 1013–1015, https://doi.org/10.1103/PhysRevLett.28.1013.

[40] B.L. Henke, E.M. Gullikson, J.C. Davis, X-ray interactions: photoabsorption,

scattering, transmission and reflection E = 50–30,000 eV, Z = 1–92, At. Data Nucl.
Data Tables 54 (1973) 1–168, https://doi.org/10.1006/adnd.1993.1013.

[41] M. Alvisi, et al., The determination of the efficiency of energy dispersive X-ray
spectrometers by a new reference material, Microsc. Microanal. 12 (5) (2006)
406–415, https://doi.org/10.1017/S1431927606060557.

[42] V.D. Hodoroaba, M. Procop, A method to test the performance of an energy-dis-
persive X-ray spectrometer (EDS), Microsc. Microanal. 20 (5) (2014) 1556–1564,
https://doi.org/10.1017/S1431927614001652.

[43] A. Saltelli, M. Ratto, T. Andres, et al., Global Sensitivity Analysis: The Primer, John
Wiley & Sons, 2008, https://doi.org/10.1002/9780470725184.

[44] N.P. Barradas, C. Jeynes, M. Jenkin, P.K. Marriott, Bayesian error analysis of
Rutherford backscattering spectra, Thin Solid Films 343 (1999) 31–34, https://doi.
org/10.1016/S0040-6090(98)01681-2.

[45] J. Jokinen, J. Keinonen, P. Tikkanen, et al., Comparison of TOF-ERDA and nuclear
resonance reaction techniques for range profile measurements of keV energy im-
plants, Nucl. Instrum. Methods Phys. Res., Sect. B 119 (1996) 533–542, https://doi.
org/10.1016/S0168-583X(96)00469-7.

[46] A. Zani, D. Dellasega, V. Russo, M. Passoni, Ultra-low density carbon foams pro-
duced by pulsed laser deposition, Carbon 56 (2013) 358–365, https://doi.org/10.
1016/j.carbon.2013.01.029.

[47] P. Colombi, D.K. Agnihotri, V.E. Asadchikov, et al., Reproducibility in X-ray re-
flectometry: results from the first world-wide round-robin experiment, J. Appl.
Crystallogr. 41 (2007) 143–152, https://doi.org/10.1107/S0021889807051904.

[48] R.J. Matyi, L.E. Depero, E. Bontempi, et al., The international VAMAS project on X-
ray reflectivity measurements for evaluation of thin films and multilayers — pre-
liminary results from the second round-robin, Thin Solid Films 516 (2008)
7962–7966, https://doi.org/10.1016/j.tsf.2008.04.004.

[49] L. Lutterotti, D. Chateigner, S. Ferrari, J. Ricote, Texture, residual stress and
structural analysis of thin films using a combined X-ray analysis, Thin Solid Films
450 (2004) 34–41 Software available at http://maud.radiographema.eu/ https://
doi.org/10.1016/j.tsf.2003.10.150.

[50] A. Lamperti, L. Lamagna, G. Congedo, S. Spiga, Cubic/tetragonal phase stabilization
in high-k ZrO2 thin films grown using O3-based atomic layer deposition, J.
Electrochem. Soc. 158 (2011) G221–G226, https://doi.org/10.1149/1.3625254.

[51] Technical Committee ISO/TC 201 (Surface chemical analysis), Evaluation of
thickness, density and interface width of thin films by X-ray reflectometry — in-
strumental requirements, alignment and positioning, data collection, data analysis
and reporting, International Standard ISO N. 16413, International Standard
Organization Geneva (CH), 2013 https://www.iso.org/obp/ui/#
iso:std:iso:16413:en.

A. Pazzaglia, et al. Materials Characterization 153 (2019) 92–102

102

https://doi.org/10.1088/0031-9155/28/5/007
https://doi.org/10.1002/sia.973
https://doi.org/10.1103/PhysRevA.11.1286
https://doi.org/10.1103/PhysRevA.11.1286
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0140
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0140
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1063/1.1595653
https://doi.org/10.1016/j.cpc.2004.09.006
https://doi.org/10.1016/j.cpc.2004.09.006
https://doi.org/10.1063/1.1595653
https://doi.org/10.1063/1.1595653
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0165
http://refhub.elsevier.com/S1044-5803(19)30065-8/rf0165
https://doi.org/10.1016/0168-583X(92)95108-4
https://doi.org/10.1016/j.adt.2009.08.001
https://doi.org/10.1016/j.adt.2009.08.001
https://doi.org/10.1016/S0969-806X(01)00227-4
https://doi.org/10.1016/S0969-806X(01)00227-4
https://doi.org/10.1063/1.555955
https://doi.org/10.1103/PhysRevA.4.507
https://doi.org/10.1103/PhysRevLett.28.1013
https://doi.org/10.1006/adnd.1993.1013
https://doi.org/10.1017/S1431927606060557
https://doi.org/10.1017/S1431927614001652
https://doi.org/10.1002/9780470725184
https://doi.org/10.1016/S0040-6090(98)01681-2
https://doi.org/10.1016/S0040-6090(98)01681-2
https://doi.org/10.1016/S0168-583X(96)00469-7
https://doi.org/10.1016/S0168-583X(96)00469-7
https://doi.org/10.1016/j.carbon.2013.01.029
https://doi.org/10.1016/j.carbon.2013.01.029
https://doi.org/10.1107/S0021889807051904
https://doi.org/10.1016/j.tsf.2008.04.004
http://maud.radiographema.eu/
https://doi.org/10.1016/j.tsf.2003.10.150
https://doi.org/10.1016/j.tsf.2003.10.150
https://doi.org/10.1149/1.3625254
https://www.iso.org/obp/ui/%23iso:std:iso:16413:en
https://www.iso.org/obp/ui/%23iso:std:iso:16413:en

	Reference-free evaluation of thin films mass thickness and composition through energy dispersive X-ray spectroscopy
	Introduction
	Reference-free mass thickness and composition evaluation
	Electron transport model
	Spatial advection-diffusion model
	Numerical solution

	Model physical parameters
	Electron elastic scattering
	Electron inelastic scattering
	X-rays generation, attenuation and detection

	Results and discussion
	Uncertainty and sensitivity analysis
	Benchmarks
	Mass thickness and composition mapping: an example

	Conclusions
	Materials &#x200B;&&#x200B; methods: deposition and characterization techniques
	Acknowledgements
	mk:H1_18
	mk:H1_19
	Author contributions
	mk:H1_21
	Data availability
	mk:H1_23
	References




