

POLITECNICO MILANO 1863

# TARG4

4th Targetry for High Repetition Rate Laser-Driven Sources Workshop



DEPARTMENT OF ENERGY



# Production of optimized multi-layer targets for enhanced laser driven ion acceleration

Francesco Mirani Politecnico di Milano

TARG4, Milan, 10/06/2019









# Target Normal Sheath Acceleration (TNSA)



## **Enhanced Target Normal Sheath Acceleration (TNSA)**



A. Macchi et al., Rev. Mod. Phys. 85(2), 751 (2013).

M. Passoni et al. Phys Rev Acc Beams 19.6 (2016)

# **Enhanced Target Normal Sheath Acceleration (TNSA)**





### Direct deposition of the target on the holder!





# Many possible improvements on target!

✓ Tuning thicknesses (um −nm)

Thickness uniformity (light tight)

Multilayer film & Multielemental composition

 $\bigcirc$  Film growth on frame  $\rightarrow$  no attaching problems

#### Direct deposition of the target on the holder!

X

Deposition of near critical carbon foam via PLD



✓ Tuning thicknesses (um –nm)

Thickness uniformity (light tight)

Multilayer film & Multielemental composition

 $\bigcirc$  Film growth on frame  $\rightarrow$  no attaching problems

# Step-by-step target fabrication



Activity in collaboration with SOURCE

# Step-by-step target fabrication



# Magnetron Sputtering



Experimental facility @ Nanolab



- Physical Vapour Deposition (PVD)
- Magnetic field to concentrate the plasma on sputtering target.

- Well established industrial technique.
- Many target materials & substrates.
- Different types of power sources.

# Magnetron Sputtering

#### Direct Current (DC) Magnetron Sputtering

- Mean power density ~ 1 W/cm2
- Ionized fraction ~ 1 %
- Columnar growth:



High Power Impulse Magnetron Sputtering (HiPIMS)

- Peak power density ~ 10<sup>3</sup> W/cm2
- Ionized fraction > 50 %
- Compact morphology:



- Uniform deposition on large surfaces.
- Film thickness from few nm up to several µm.
- Tunability of density, morphology and mechanical properties.

K. Sarakinos et al., Surf. and Coat. Technol. 204 (2010), no. 11, 1661 – 1684.

# Holes filling



# Substrate Production & Characterization



# Substrate Production & Characterization



# Substrate Production & Characterization





### Combine DC & HiPIMS deposition techniques in a bilayer structure!





### Combine DC & HiPIMS deposition techniques in a multilayer structure!



# Effect of the % of HiPIMS



# Outcomes

# Reliable strategy to produce targets for laser-driven ion acceleration

- Thicknesses ranging from 300 nm up to 1 um
- Uncertainty on the thickness lower than ± 5 %
- Compact morphology with high density values (up to 90 % of the bulk)

# Possible improvements?

- Extend the thickness range (from 100 nm to several μm).
- Improve the control of structural integrity.
- Exploit the co-deposition of several materials.





# Next step...production of an integrated double layer target with ns & fs - PLD



#### Francesco Mirani

### Towards the applications

#### Laser-driven Ion Beam Analysis



Passoni M., Fedeli L and Mirani F. Superintense Laser-driven Ion Beam Analysis (2019). Scientific Reports

#### Francesco Mirani

### Towards the applications



Passoni M., Fedeli L and Mirani F. Superintense Laser-driven Ion Beam Analysis (2019). Scientific Reports

#### Francesco Mirani

### Towards the applications

#### Laser-driven neutron sources

A. Tentori Master's thesis, Politecnico di Milano, Italy (2018) F. Arioli Master's thesis, Politecnico di Milano, Italy (2019)



~ 50 cm

Radioisotope production \*\*

A. C. Giovannelli Master's thesis, Politecnico di Milano, Italy (2019)

# **Acknowledgments**



# Thank you for your attention!

**POLITECNICO** MILANO 1863

Francesco Mirani

### **Near-critical targets for laser-driven acceleration**

 $I_{laser} = 10^{20} \text{ W/cm}^2 \longrightarrow E_{laser} = 3 \times 10^{11} \text{ V/m} = 50 \times E_{atomic} \longrightarrow \text{Full ionization} \longrightarrow \text{Plasma!}$ 



# Ion acceleration @ PULSER (GIST)

in collaboration with: I. W. Choi, C. H. Nam et al.

Role of target properties (s-polarization, full power)

**nearcritical foam thickness**: Al (0.75 μm) + foam (6.8 mg/cm<sup>3</sup>, 0-36 μm)



There is an **optimum** in near critical layer **thickness** 

- Maximum proton energy enhanced by a factor ~ 1.7
- **Number** of proton **enhanced** by a factor ~ **7**

M. Passoni et al., *Phys. Rev. Accel. Beams* **19**, (2016) I. Prencipe et al., *Plasma Phys. Control. Fus.* **58** (2016)



# Ion acceleration @ PULSER (GIST)

in collaboration with: I. W. Choi, C. H. Nam et al.

**Role of pulse properties** Al (0.75 µm) + foam (6.8 mg/cm<sup>3</sup>, 8 µm)

- **b** pulse **intensity**
- pulse polarization: s, p and circular polarization



Dependence on **polarization**:

- strong for Al foils
- reduced for foam targets



- foam vs Al: volume vs surface interaction?
- irregular foam surface: polarization definition?
- role of target nanostructure?



#### Ion acceleration @ DRACO 150 TW (preliminary data!) in collaboration with: I. Prencipe, T. Cowan, U. Schram et al. Laser parameters @ Draco (HZDR, Dresden) 30 Energy on target = 2 J- 4 μm C foam on 1.5 μm Al H<sup>+</sup> max. energy [MeV] 25 Intensity = up to 5 x $10^{20}$ W/cm<sup>2</sup> - 1.5 um Al. no foam Angle of incidence = $2^{\circ}$ 20 Foam PLD parameters 15 $F = 2.1 \text{ J/cm}^2$ 10 P = 1000 Pa Ar $d_{ts} = 4.5 \text{ cm}$ 5 Substrate = AI 1.5 µm 50 60 70 80 90 100 110 30 40 Foam thickness = 4, 8, 12 $\mu$ m Laser power fraction (%) 10<sup>12</sup> 30 -AI - shot #64 AI + foam 4 um - shot #23 Particles [1/(MeV\*sr)] H<sup>+</sup> max. energy [MeV] Optimal foam 25 1011 thickness 20 1010 15 10° 10 No foam # 10<sup>8</sup> 5 25 0 6 8 10 12 5 10 15 20 30 Foam thickness [µm] Energy [MeV]

### Near-critical targets for laser-driven acceleration

 $I_{laser}$ =10<sup>20</sup> W/cm<sup>2</sup>  $\longrightarrow E_{laser}$  = 3 x 10<sup>11</sup> V/m = 50 X  $E_{atomic} \longrightarrow$  Full ionization  $\longrightarrow$  Plasma!



#### Presence of the bias: XRD analysis



#### Morphology



# Laser-driven Particle Induced X-ray Emission (PIXE)



- Laser-driven PIXE:
  - Unconventional features of ion beam (broad spectrum, tunable energy, ns bunch duration)
  - ✓ Cheaper, portable PIXE setup
- Commercial codes not ok for laser PIXE
  - ✓ Ad-hoc code developed





