

Advanced laser-driven ion sources and their applications in materials and nuclear science

> Matteo Passoni Politecnico di Milano

EPS 2019, Milano, 08/07/2019

Outline

- The ERC ENSURE project @Nanolab, Politecnico di Milano
 - Theoretical and experimental study of laser-plasma based ion sources
 - Applications in material and nuclear fields
- Enhancing laser-plasma coupling: **nanostructured near-critical plasmas**
- **Target fabrication** for laser-driven ion accelerators
 - Double-layer target concept & production via PLD/HiPIMS
- Laser-ion acceleration experiments with double-layer targets
- Theoretical study of selected applications
 - Ion Beam Analysis
 - Neutron & radioisotope production
- Conclusions

POLITECNICO MILANO 1863

- Largest university of engineering, architecture, design in Italy
- \sim 40000 students, ~1400 academic staff, 900 PhDs
- □ 32 BSc, 34 MSc, 18 PhD programmes

EPS DPP satellite workshop on High-Field Laser-Plasma Interaction July 13, 2019 Politecnico di Milano, Italy

www.hflpi.polimi.it

ENSURE

Exploring the New Science and engineering unveiled by Ultraintense ultrashort Radiation interaction with matter

MILANO 1863

POLITECNICO

DIPARTIMENTO DI ENERGIA

ERC consolidator grant: 5 year project, from September 2015 to September 2020

erc

<u>Goal</u>: To Explore the New Science and engineering unveiled by Ultraintense, ultrashort Radiation interaction with mattEr

Hosted @ ManoLab, Department of Energy, Politecnico di Milano

Principal investigator: Matteo Passoni

Team: PI, 1 Associate Professor, 1 Assistant Professor, 2 Post-Docs, 3 PhDs + master students and support from NanoLab people

www.ensure.polimi.it

ENSURE: Main fields of research

Theoretical & experimental investigation of laser-plasma based ion acceleration

PVD-plasma based advanced materials production & characterization

(low-density foams & multilayer targets) for laser-plasma interaction experiments

Application of laser-driven ion acceleration in **material & nuclear fields**

(Laser-driven Ion Beam Analysis, Compact neutron & radioisotope sources)

Plasmas as charged particle accelerators

$E_{las} \sim E_{acc} > 0.1 \text{ MV/}\mu m$

Laser-plasma acceleration of ions

A. Macchi at al., *Rev. Mod. Phys.* 85, 751 (2013)
H. Daido et al., *Rep. Prog. Phys.* 75, 056401 (2012)

Interesting for plasma physics:

- fundamental physics: explore novel regimes \rightarrow PW
- **applications**: employ the ions for a specific purpose \rightarrow HRR

Challenge: control and tune the laser-plasma coupling

Near-critical regime for laser-driven acceleration

Near-critical regime for laser-driven acceleration

Particle-In-Cell (PIC) simulations to study laser-plasma interaction

Inclusion of the plasma nanostructure & morphology to properly model physical processes

Homogeneous

Nanostructured

3D PIC simulations of laser-plasma interaction with nanostructured plasmas

- Realistic nanostructure representative of the foam growth process
- Same average electron density $\sim 3 n_c$ for fair comparisons

 $a_0 = 45$, normal incidence, P-pol

3D PIC simulations show that it is important to include the plasma nanostructure

ion phase space (x, p_x) @ $a_0=15$

Plasma nanostructure effects:

- stronger electron absorption
- much stronger ion absorption
- nanoparticles "explosion"
- higher hot electron T, if high enough a₀
- [...]

 \rightarrow for a good description, one **cannot** disregard the nanostructure – if any

see A. Formenti's talk @HFLPI, July 13 2019

2D PIC parametric simulations of laser-plasma interaction with nanostructured plasmas

- The nanostructure is a collection of "nanospheres" randomly arranged in space
- Wide range of regimes, but inherent limitations

Laser-ion acceleration: Target is the key

I. Prencipe et al. High Power Laser Sci. 5, e17 (2017)

Target Normal Sheath Acceleration (TNSA)

Enhanced TNSA

Near-critical layer onto a μm-thick foil

M. Passoni et al. Phys Rev Acc Beams 19, 061301 (2016)

Target is the key

Conventional TNSA

Enhanced TNSA

 $\hfill\square$ Near-critical layer onto a μm -thick foil

□ More and hotter relativistic electrons

M. Passoni et al. Phys Rev Acc Beams 19, 061301 (2016)

Target is the key

Conventional TNSA

The target is the key!

Enhanced TNSA

More and hotter relativistic electrons

More ions at higher energy

Production and use of targets for laser-ion sources

Near-critical layer

How to produce foams: Pulsed Laser Deposition (PLD)

How to produce carbon foams with ns-PLD

New experimental facilities @Nanolab: fs-PLD

fs-PLD interaction chamber

- PLD mode + Laser processing
- □ up to 4 targets
- Upstream + downstream pressure control
- Fast substrate heater
- Fully automated software

Coherent Astrella ™

- **Ti:Shappire** λ =800 nm
- **D** Ep > **5 mJ**
- Pulse duration < 100 fs</p>
- \Box Peak Power > 50 GW
- \Box Rep Rate = 1000 Hz

fs-PLD opens new perspectives toward near-critical nanomaterials

A "snowfall model" to describe nanofoam growth

- 1) Nanoparticles generated at the beginning of plume expansion
- 2) Nanoparticles coalesce into larger aggregates...
- 3) ...until the subsequent laser-generated shock wave drives them to substrate
- 4) Laser repetition rate emerges as a new free parameter!

A. Pazzaglia et al., *Materials Characterization* **153**, 92 (2019)

A. Maffini et al., Phys. Rev. Materials, under review

Aggregation model to study the foam growth

Diffusion-Limited Cluster-Cluster Aggregation (DLCCA):

- 1) Brownian motion of particles
- 2) Particle aggregation in clusters by irreversible sticking
- 3) Clusters deposition on substrate

Simulated Foam

Heigh [µm]

Input for realistic 3D-PIC simulations!

New experimental facilities @Nanolab: HiPIMS

High Power Impulse Magnetron Sputtering (HiPIMS)

Pulsed High Power Voltage (50 us, 800 V)

□ Peak power density = 10^3 W/cm² □ Peak current density = 1 - 5 A/cm²

Compact solid layers in HiPIMS mode! HiPIMS DCMS

Combined PLD & HiPIMS deposition techniques to produce the desired near-critical double-layer target

D. Vavassori, MSc thesis in Nuclear Engineering (2019)

Ion acceleration @PULSER (GIST)

in collaboration with: I. W. Choi, C. H. Nam et al.

Role of target properties (s-pol, ~7 J, 3x10²⁰ Wcm⁻², 30° inc. angle)

nearcritical foam thickness: Al (0.75 μm) + foam (6.8 mg/cm³, **0-36 μm**)

- □ There is an **optimum** in near critical layer **thickness**
- □ Maximum proton energy enhanced by a factor ~ 1.7
- □ Number of proton enhanced by a factor ~ 7
- M. Passoni et al., *Phys. Rev. Accel. Beams* **19**, (2016) I. Prencipe et al., *Plasma Phys. Control. Fus.* **58** (2016)

Ion acceleration @PULSER (GIST)

in collaboration with: I. W. Choi, C. H. Nam et al.

Role of pulse properties AI (0.75 μm) + foam (6.8 mg/cm³, 8 μm)

- pulse intensity
- pulse polarization: s, p and circular polarization

Dependence on **polarization**:

- strong for AI foils
- reduced for foam targets

- ➢ foam vs AI: volume vs surface interaction
- irregular foam surface: polarization definition
- role of target nanostructure

Ion acceleration @DRACO 150 TW

in collaboration with: I. Prencipe, T. Cowan, U. Schramm et al.

Laser-ion acceleration theoretical modeling

Application of laser-ion sources

A novel theoretical tool to study laser-ion sources for **nuclear** and **material science**

Laser-driven Particle Induced X-ray Emission (PIXE)

0.1

Fe

Cu

Zn

Sn

Pb

- Laser-driven PIXE:
 - Unconventional features of ion \checkmark beam (broad spectrum, tunable energy, ns bunch duration)
 - Cheaper, portable PIXE setup
- Commercial codes not ok for laser PIXE
 - ✓ Ad-hoc code developed

M. Passoni et al. Scientific Reports, 9, 9202 (2019)

Laser-driven Particle Induced X-ray Emission (PIXE)

...other experiments foreseen also with industrial partners: Source LAB

Need to address important aspects like:

- effective removal (and/or use) of the electrons;
- development of suitable detectors;
- in-vacuum vs in-air setup;
- * ...

Towards portable neutron sources

Laser-driven production of medical radioisotopes

Conclusions

- Control & optimization of laser-plasma coupling is central to develop laser-plasma based ion accelerators...target is the key!
- nanostructured near-critical plasmas are an appealing solution
- Need for truly multi-disciplinary approach: laser-plasma physics, material science, theory, simulation & experiments...
- Justified emphasis on the laser technology...but plasma physics & target technology play and will play an essential role
- Some applications of compact laser-ion accelerators can be realistically not so far!

The ENSURE team at Politecnico di Milano

D. Vavassori

Saturday 13, **July 2019** Politecnico di Milano, **Milano, Italy**

Chairs: Marija Vranic, Mickael Grech, Matteo Passoni

POLITECNICO MILANO 1863

ENSURE, ERC-2014-CoG No.647554

Saturday 13, **July 2019** Politecnico di Milano, **Milano, Italy**

Chairs: Marija Vranic, Mickael Grech, Matteo Passoni

POLITECNICO MILANO 1863

ENSURE, ERC-2014-CoG No.647554

Foam property control with PLD

