## On The Role Of Non-equilibrium, Relativistic Hot Electron Population In Target Normal Sheath Acceleration **EPS 2019** POLITECNICO A. Maffini, A. Formenti, M. Passoni July 8-12, Milan **MILANO 1863** Department of Energy, Politecnico di Milano, Italy **DIPARTIMENTO DI ENERGIA**

# **Target Normal Sheath Acceleration**

Concept

**46**<sup>t</sup>

PLASMA

PHYSICS

Conference

• Superintense ultrashort laser  $\rightarrow$  Relativistic electron population  $\rightarrow$  Charge separation  $\rightarrow$  Ion accelearation • Most robust and reliable laser-driven ion acceleration scheme at present achievable laser intensities

### Superintense laser

- 10 10<sup>3</sup> TW • 10 – 10<sup>3</sup> fs
- 0.1 10 J
- 10<sup>18</sup> 10<sup>22</sup> W/cm<sup>2</sup>

### **Accelerated ions** - 10 nm ් 10<sup>12</sup> - 75 nm – 90 nm \_New) 10<sup>11</sup> 10<sup>10</sup> 1500 nm 10<sup>10</sup>

### **Applications**

- Today
- Proton radiography
- Ion Beam Analysis
- Radioisotope production
- Neutron generation

#### Tomorrow

### Self-consistent quasi-static TNSA model

#### Framework

- Kinetic description of hot electrons
- 1D1D phase space  $\leftrightarrow$  (x, p)
- Time independent
- Frozen ions and cold electrons

### Hot electrons distribution: Maxwell-Jüttner

$$f(x,p) = \frac{n_0}{2m_e c K_1(m_e c^2/T)} \exp\left[-\frac{m_e c^2 \gamma(p)}{T}\right], \qquad \gamma(p) = \sqrt{1 + \frac{p^2}{m_e^2 c^2}}$$

Only trapped electrons build up the accelerating field

M. Passoni et al., Phys. Rev. Lett. 101.11 (2008): 115001 M. Passoni et al., New J. Phys. 12.4 (2010): 045012.



### Goal: Improve the self-consistent quasi static TNSA model

**Determine model parameters** from experimental quantities

Use scaling scaling laws to fix the main model parameters:  $n_0$  , T ,  $\phi^*$ 



**Include non-equilibrium features** in TNSA description

11.5

11

10.5

10

9.5

α

100 120 140 160

 $\Delta$ 

Compare many scenarios that only

Total hot electron number and energy per unit area ( $\leftarrow$  1D model)

 $E_{tot} \approx n_0 e^{e\phi^*/T} d \left[ T + mc^2 \left( \frac{K_0(mc^2/T)}{K_1(mc^2/T)} - 1 \right) \right]$ 

differ by the degree of non-equilibrium

Determine model parameters from experimental quantities

Find "macro-quantities"

 $N_{tot} = n_0 \int_{-d}^{+\infty} e^{\frac{e\phi}{T}} dx \approx n_0 e^{e\phi^*/T} d$ 

$$n_{trap}(x) = \int_{-p_{cutoff}}^{+p_{cutoff}} f(x, p) \mathrm{d}p, \qquad p_{cutoff} = m_e c \sqrt{\left(\frac{\varphi(x)}{m_e c^2} + 1\right)^2 - 1}$$

### **Self-consistent Poisson equation**

 $\Delta \varphi = 4\pi e(n_{trap}(x) - n_{trap}(x^*))$ if  $x \leq 0$  $\Delta \varphi = 4\pi e n_{trap}(x) \qquad \text{if } x > 0$  $BC \to \exists x^* : \varphi(x^*) = \varphi^* \longrightarrow \max \varphi(x) = \varphi^*$ 

Accelerated ions, maximum energy  $\mathcal{E}_{i,max} = Ze\varphi_0 = Ze\varphi(x=0)$ 

An example  $n_0 = 2 \times 10^{19} \text{ cm}^{-3}$ , T = 2 MeV,  $\phi^* = 10 \text{ MV}$  • strong nonlinearity

- 3 main parameters:  $n_0$ , T,  $\phi^*$
- f(x,p) at equilibrium



### **Fix additional parameters**

- d = thickness = 5 µm
- $\eta$  = absorption efficiency = 0.1
- $\tau$  = pulse duration = 30 fs
- $\sigma$  = focal spot in {5, 25 125}  $\mu$ m<sup>2</sup>
- $E_1$  = laser energy in [10 mJ, 100 J]



T [MeV]

2.9

2.8

2.7

2.6

2.5

2.4

0



Results for increasing non-equilibrium

### Include non-equilibrium features in TNSA description

### Build a relativistic distribution function solution of Vlasov equation

- Cairns distribution function for space plasmas R. A. Cairns et al., Geophys. Res. Lett. 22.20 (1995): 2709-2712
- A. Bahache et al., Phys. Plasmas 24.8 (2017): 083102 • A non-relativistic version proposed for TNSA
- We propose a fully relativistic Cairns-like distribution function, solution of Vlasov equation



Make fair comparisons to asses the role of non-equilibrium features

#### • $d = 5 \,\mu m$ Same laser: $E_1 = 1J \rightarrow \text{same } T/\phi^* \sim 4.8$ • η = 0.1 Same total number: $N_{tot} \sim 1.25 \text{ x } 10^{10} \text{ e}^-/\mu m^2$ • τ = 30 fs Same energy of hot electrons: $E_{tot} \sim 4 \times 10^{-3} \text{ J/}\mu\text{m}^2$ • $\sigma = 25 \,\mu m^2$ electric field profile model parameters maximum proton energy 10<sup>1</sup> 3.4 13.5 3.3 1.8 10<sup>0</sup> 3.2 13 3.1 12.5 n<sub>0</sub> [10<sup>19</sup> cm<sup>-3</sup>] 10<sup>-1</sup> E<sub>i,max</sub> [MeV] E [MV/µm] 12 3 1.2

40

20

60

80

x [µm]

10<sup>-2</sup>

10<sup>-3</sup>

10<sup>-4</sup>

10<sup>-5</sup>

0



#### **Procedure**

+37%

- pick  $E_1 \rightarrow$  find  $N_{tot}$  and  $E_{tot}$  at equilibrium  $\rightarrow$  find  $n_0$ , T,  $\phi^*$  at equilibrium
- we assume the same  $T/\phi^*$  ratio  $\forall \alpha$
- pick  $\alpha > 0 \rightarrow$  find adjusted values of  $n_0$ , T,  $\phi^*$  such that  $N_{tot}$  and  $E_{tot}$  are the same
- $\forall \alpha$  solve TNSA model with new parameters

## Conclusions

**Determination of model parameters**  $\rightarrow$  with physical scaling laws **Inclusion of non-equilibrium features**  $\rightarrow$  definition of a suitable distribution function **Results**  $\rightarrow$  non-equilibrium features do have a role

 $\rightarrow$  3 optimal non-equilibrium parameter for ion maximum energy



0.8

0.6

0.4

0.2





ACKNOWLEDGMENTS