Modeling Nanostructured Plasmas For Superintense Laser-Plasma Interaction Experiments

A. Formenti, A. Maffini, A. Pazzaglia, L. Fedeli, M. Passoni

Department of Energy, Politecnico di Milano, Italy

Nanostructured targets for laser-plasma experiments

Laser parameters (DRACO 200 TW)

Proton spectra from Thomson Parabola

Carbon-based nanostructured materials

Pulsed Laser Deposition: a versatile tool for nanostructured materials deposition

• 3D is required to faithfully capture the structure and get more accurate results

A "typical" 3D PIC simulations of laser-nanostructure interaction

	Real nanoparticles	Simulated nanoparticles
Radius	~10 nm	~40 nm
Density	~200 n _c	~60 n _c

Computational time

~10 hours on 64 nodes, 36 cores/node → >20 kCPUhours

RAM memory

~17 x 10⁹ particles + ~10¹⁰ grid points \rightarrow ~1 TB for each time-step

Storage memory

save data every 10 $\lambda/c \rightarrow \sim$ **10 TB for each simulation**

homoge

target

bare [.]

CONTACTS

3D PIC Results of Laser-Driven Ion Acceleration

Real nanostructures are accurately reproduced Real Foam Simulated Foam

Input of PIC simulation

- Save particles coordinates
- Save particles radii
- Import in PIC
- Sample with PIC macroparticles
- Initialize as a fully-ionized C plasma

L. Fedeli et al., Sci. Rep. 8 (2018)

- Nanostructure matters!
- Nanostrucutred targets less sensitive to
- Double Layer Target better than bare foil • Potential interest for applications (e.g.

arianna.formenti@polimi.it

www.ensure.polimi.it

Modeling of nanofoam materials

A numerical model of foam aggregation to reproduce morphology and nanostructure

Conclusions

PIC simulations of laser-nanostructures interaction

Combined and integrated 2D and 3D simulations is the most convenient solution

3D PIC simulation for ion acceleration with nanostructured targets

• The nanostructure has to be included for complete description of the process • Nanostructure engineering may enable novel applications of laser-driven ion beams

