

Growth of nanostructured ω -phase titanium films deposited by biased HiPIMS

POLITECNICO MILANO 1863

D. Dellasega, F. Mirani, D. Vavassori, C. Conti, M. Beghi, M. Passoni

Department of Energy, Politecnico di Milano, Milan, Italy ICVBC, National Research Council, Milan, Italy

www.ensure.polimi.it

Aim and Scopus

Ti films have been extensively studied and exploited in various fields such as in aerospace, production of medical implants, microelectronics and as adhesion layer for Ti oxides and nitrides. Despite the huge interest on this topic there are few works related to Ti metallic films deposited by HiPIMS. In the present work we report the deposition of Ti films at various bias voltages.

Deposition Parameters

Target: Ti – 2' diameter **Substrate**: Si (100) **Ambient gas:** Ar **Background pressure:** 3 – 6 E-07 mBar **Working pressure:** 5 E-03 mBar **Gas flux:** 80 sccm • t_on = 50 us

• t_off = 2800 us • Duty cycle = 1.75 % • Frequency = 350.88 Hz

• t_tot = $30 \min \rightarrow 240 \min$

Effect of Bias Voltage & Deposition time: morphology

	30 min	60 min	120 min	240 min
0	1um	1um	1um	
	1um	<u>1um</u>	<u>1um</u>	1um

Effect of Bias Voltage on Ti deposition with HiPIMS

SEM analysis:

(001)

WWWWWWWWW

40

39

(101)

Ti deposition with DC Magnetron Spattering

- **Cauliflower growth**
- Mainly oriented along (002) and (102)

DC:

- t tot = 60 min
- Voltage = 440 V
- Current = 1 A
- Power = 450 W

Stresses

(102)

52 54 56

SEM analysis:

No Annealing

Substrate curvature analysis

Conclusions

- Investigated the role of energy of depositing Ti species
- crystallographic oriented growth of α-Ti (hcp phase)
- nucleation of a simple hexagonal phase ω-Ti, is promoted.
- ω -Ti phase \leftarrow elongated grains

Production of substrates for laser driven ion acceleration

Free standing Ti film 300 nm thick!