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Compact neutron and ion sources

Many different compact neutron and ion
sources already exist:

e radioactive sources [n]

e Sealed Tube Neutron Generators [n]

e cyclotrons [i]

MP 320 Sealed Tube Neutron Generator
Thermo Fisher Scientific
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Commercial PET cyclotron
IBA RadioPharma Solutions

Capsules of 252Cf
Frontier Technology Corporation

With lasers, by “compact” we mean that we consider

~10 TW class systems, e.g. table-top Ti:Sapphire,
which usually are way smaller and cheaper than ~100TW -
1PW systems and have moderate pulse energy md - J and
short duration ~10fs

Not quite like this...
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Why should we try with lasers?

Advantages Plus, significant neutron yields have
already been observed with lasers
e flexibility: changing the laser/target parameters, O
you change the neutrons/ions properties - ® jons Poth PRL 2013
- ® electrons o ./
1010 _ _
e pulsed: pump and probe experiments - o ©
- . .
109 F o ¢ -
e ultra-short: access to ultra-fast (~10 ps - ns) - o Somerants PRL 2014 ]
dynamics % 108 | o/ .
E O Kar NJP 2016
n n © -
* point-like source ° 107 L ¢ _
S, / :
e multi-purpose: with a single shot you can 108 L . ACAPEETS
produce different types of radiation i o '\ ‘
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What has been done with compact systems?

Neutrons from TNSA protons and Neutrons from fusion reactions in a Photoneutrons from gammas from
deuterons In a pitcher-catcher config bulk config with flowing heavy-water electrons accelerated via LWFA
with a LiF catcher jet target at high rep rate hitting a W converter
Zulick APL 2013 Hah PPCF 2018 Jiao MRE 2017
7 1 |
L —— Simulation D-Li (Ice) —_H,0 (a) 12 [
v D-Li(lce) e D0 =~ |
10° Simulation D-Li (Paint) _ 080 S 10
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o =2 = o
Z c & 0.4 = 6l
5 S 10° : s
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0 5 10 15 20 2 - : = : s : 0 : : ‘ A ‘ : :
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Angle from laser direction (°)
HERCULES, 1J, 1021W/cm?2, 45fs A3, 10 md, 101°® W/cm=2, 40 fs @ 0.5Hz UTts, 0.54,1018 W/cmz2, 40 fs
— 107 n/sr forward — 2x10°n/sin 4mn — 104 n/sr
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We want to further investigate this kind of approach

Neutrons from TNSA protons and
deuterons in a pitcher-catcher config
with a LiF catcher

Zulick APL 2013
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Compact neutron sources from TNSA-driven ions
In a pitcher-catcher configuration

driver pitcher catcher

ions neutrons

Il =
~ 10 TW class

laser pulse

¢ Ultra-intense

¢ Ultra-short

”
-—)
-

Because we want to lower as much as possibile the laser requirements,
we exploit an advanced pitcher concept to still have good performances in
lon acceleration and, in turn, also in the neutron generation processes.
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Compact neutron sources from TNSA-driven ions
In a pitcher-catcher configuration

driver advanced pitcher catcher

iy =

~ 10 TW class
laser pulse

¢ Ultra-intense
¢ Ultra-short

-

ions

neutrons

”
-—)
-

Because we want to lower as much as possibile the laser requirements,
we exploit an advanced pitcher concept to still have good performances in
lon acceleration and, in turn, also in the neutron generation processes.
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Enhanced TNSA via near-critical layer before the typical solid foil

Enhanced TNSA Conventional TNSA
near-critical layer
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The near-critical layer leads to a better hot electron generation

Enhanced TNSA Conventional TNSA

near-critical layer l

bigger and hotter hot electron SS==—=tt
electron cloud cloud

[T1

i
|
i

| ———m T l um-thick um-thick
| solid foll solid foll
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Significant increase of ion total number and maximum energy

Enhanced TNSA Conventional TNSA

near-critical layer

[
N
L]
1]
]
1

t =189 fs

E [MeV] more accelerated ions accelerated
at higher energy lons
1L
um-thick um-thick
solid foll solid foll
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Carbon foams are one of the few solid near-critical materials for A~1um

top vie

X

w SEM image cross section SEM image
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Mag= 200KX 10 pm WD = 4.3 mm EHT = 5.00 kv NEMAS

NanoBgineered MAtenals and Surfaces

Date :29 Nov 2016 | e Signal A= InLens POLITECNICO DI MILANO

Mag= 5.00 K X WD = 5.9 mm EHT = 5.00 kv NEMAS

NanoBgineered MAtenals and Surfaces

Date :29 Nov 2016 Signal A= InLens POLITECNICO DI MILANO

e high porosity — ultra-low average mass density (down to 10 mg/cms3)
e aggregates of nanoparticles (radius ~ 10 - 20 nm)
e complex density profile coming from growth process (PLD, a PVD technique)
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Compact neutron sources from enhanced TNSA
with foam-attached targets

driver advan tcher Benefits with foam targets

i

v’ acceleration
® more ions (~4 times)
® higher maximum energy (~2 times)

_ v robustness
1ons e quite easy to handle
e suitable for high rep rate
~10 TW class
laser pulse v flexibility
* intense  No polarization dependence
e short low density um-thick

carbon foam solid foll
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Compact neutron sources from enhanced TNSA
with foam-attached targets

driver advanced pitcher catcher

‘“““"“ ‘“mm | —p

~10 TW class

laser pulse

® intense

¢ short low density um-thick
carbon foam solid foil

”
-—)

neutrons

-

| ——————

ions

Goal: assess the feasibility of compact laser-driven neutron sources and
design an optimized configuration to be tested experimentally. How?
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We perform integrated, multi-physics, “realistic” simulations

3D PIC simulations
of laser-driven ion acceleration

Realistic foam description MC simulations

of neutron generation
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Step 1 - Realistic description of the foam material

aggregation model that model vs. real
mimics the growth process

Cross-section top-view

-
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1) particles in >
Brownian motion o
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s
. >
3) clusters deposition L

onto a substrate

2) particles
aggregation in
clusters

nice agreement!
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Step 2 - 3D PIC simulations of laser-driven ion acceleration

3D PIC simulation

60 70 80 90 100 110
px [MeV/c]

output
o

on
momentum
distribution

I 60 70 80 90 100 110
by [MeV/c]

Open Source PI1C
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p, [MeV/c] py [MeV/c]

p, [MeV/c]

b _
oMo Mo

Step 3 - MC simulations of neutron generation

60 70 80 90 100 110
px [MeV/c]
ﬁ input
| T LUIN
0N
momentum
distribution

60 70 80 90 100 110
px [MeV/c]
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MC simulation
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We can tune several parameters to optimize the process

driver catcher
foam 1
“““““ “““““ ions neutrons
® protons
~10 TW class e douterons ‘
laser pulse o other
fixed, let's say: e foam density e composition
A=0.8pum, T = 30 fs, e foam thickness ® reactions
W =95 pum, ap = 3.5, ¢ foam morphology ¢ thickness
e~000md,P~20TW ® target composition
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We can tune several parameters to optimize the process

driver catcher
foam 1
“““"“ “‘ “mm‘ ions nheutrons
® protons
~10 TW class e douterons ‘
laser pulse o other
fixed, let's say: e foam density e composition
A=0.8pum, T = 30 fs, e foam thickness ® reactions
W =95 pum, ap = 3.5, ¢ foam morphology ¢ thickness
e~000md,P~20TW ® target composition

There’s a complex interplay between all the degrees of freedom we
can play with, so that there’s no universal recipe for optimization.
In the following: one possible strategy.

flay
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Step 1: design the foam-attached target via 2D PIC simulations

Use different foams targets and
pick the one that leads to
higher ion energy and number:
here would be the foam with

4um thickness and1nc density
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something like 5 MeV
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1.2

Step 2: pick what species to accelerate

Incident protons

o [barn]

Let’s say we pick protons

because it’'s easier to make the target

)

(i) POLITECNICO MILANO 1863

iINncident deuterons
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Plus, consider the reactions Q-value
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o [barn]

Step 3: design the converter: composition

1.2 | ! T T T T 1]

® ® & 6 06 % ¢

—XFOR cross-section data for (p,xn) reactions

>
plus other

Nn-generating
reactions

Evx dN, 0
Y(E, ) =j —L(E,) J o(E,)

102

neutron yield [n/(10%p)]

10710
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, dE, .

dE,
/2
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Be -
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max p energy [MeV]

Y
N
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Step 4: design the converter: thickness and others

thickness other issues
3.5 b b I L L L LA | T T T T T T 1]

o | iis explosive
¢ Be IS toxIC
e medium-Z materials lead to

= long-lived radioactive isotopes
E, * radioprotection
= * need for cooling
2 * hydrogen embrittlement
® melting
1 10 100 » |In the end, we picked lithium with thickness
thickness [% of range of the most energetic ions] equal to range of most energetic particles,

even tough it comes with several issues

e too thin: not all ions converted, easier to melt
e to0 thick: less energy and collimation of neutrons
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energy
distribution

protons

angular
distribution

Some results with a 20 TW, 0.6 J, 30 fs laser
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Some results with a 20 TW, 600 md, 30 fs laser

108 i I I I I

| -
no foam === -
yes foam s

T=1.4 MeV E

103 £ T=0.51 Mev

proton spectrum [a.u.]

energy [MeV]

No foam, no neutrons with these laser parameter!
The foam enables the neutron generation process
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Some results witha 75 TW, 2.2 J, 30 fs laser
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Conclusions and perspectives

e \Ve developed an integrated, multi-physics, “realistic” simulation approach to study laser-driven neutron
sources from enhanced TNSA ions with foam-attached targets in a pitcher-catcher configuration
e Qur results show that with ~ 10 TW class lasers you can obtain nice vyields ~ 105-106 n/sr in 4t

driver advanced pitcher catcher

"

L

| =—>

”
—
-

neutrons
~10 TW class
laser pulse
e Ultra-intense = - o
e ultra-short low density  pm-thick Exotic ideas for the converter?

carbon foam solid foil Brenner PPCF 2015

NEXT - FURTHER OPTIMIZATIONS & EXPERIMENTS
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