Nanostructured Targets For Laser-driven Ion Acceleration And Its Applications

A. Formenti, A. Maffini, L. Fedeli, A. Pazzaglia, F. Mirani, A. Tentori, F. M. Arioli, M. Passoni
Department of Energy, Politecnico di Milano, Italy

INTRODUCTION

Enhanced laser-driven ion acceleration via near-critical materials

<table>
<thead>
<tr>
<th>conventional foil</th>
<th>superintense laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 10^2 – 10^4 µm thickness</td>
<td>• 10^6 – 10^7 TW</td>
</tr>
<tr>
<td>• solid density</td>
<td>• 10^{-10} W/cm²</td>
</tr>
</tbody>
</table>

hot electrons • thermal spectrum • 1 – 10 MeV temperature

near-critical layer

accelerated ions • exponential spectrum • maximum energy < 100 MeV/A

switch to a smarter target • exploit the strong laser-matter coupling at the critical density

improved acceleration • bigger and hotter electron cloud! • more ions accelerated at higher energies!

Near-critical nanostructured double-layer targets

foam-attached target holder foam material

Particle-In-Cell simulations of laser-driven ion acceleration

methods

Integrated multi-stage and multi-scale approach

1. Nanoparticles in Brownian motion
2. Cluster aggregation by irreversible sticking

RESULTS

Role of the nanostructure & neutron generation

<table>
<thead>
<tr>
<th>homogeneous foam</th>
<th>nanostructured foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>ion spectrum</td>
<td>electron spectrum</td>
</tr>
</tbody>
</table>

Neutron angular distribution

Neutron spectrum

Some specific tools: DILCCA model, SPIN, P-segment

laser pulse

- λ = 0.8 µm
- λ = 4
- 10 fs duration
- 4 µm waist
- normal incidence
- P-polarization

foams

- homogeneous foam
- nanostructured foam

neutron spectrum

- no foam
- $n_1 = 1.5n_0$
- $n_2 = 2.3n_0$

- substrate

- 400 nm thickness
- 4 MeV

- (p,n) reactions

CONCLUSIONS & PERSPECTIVES

- FOAM-ATTACHED TARGETS: to enhance ion acceleration process
- INTEGRATED APPROACH: to simulate from the interaction to the applications
- ROLE OF THE NANOSTRUCTURE: should be included for a complete description
- NEUTRON GENERATION: promising application that may be enabled by the foam

next steps...

- include in the description other features (e.g. electron bremsstrahlung)
- experimental campaigns on neutron generation
- studies on laser-driven radioisotope production

CONTACTS

arianna.formenti@polimi.it
www.ensure.polimi.it

ACKNOWLEDGMENTS