

Laser-driven ion acceleration enhanced by ultra-low density foam-attached targets and its applications

Arianna Formenti Politecnico di Milano, Italy

European Research Council Established by the European Commission

DIPARTIMENTO DI ENERGIA

Breckenridge, Colorado, USA, August, 2018

Great improvements thanks to both progress in laser technology and clever target engineering

Great improvements thanks to both progress in laser technology and <u>clever target engineering</u>

A vast zoology of advanced targets has been Zigler, PRL snow clusters

A vast zoology of advanced targets has been Zigler, PRL snow clusters

We are working on these topics at Politecnico di Milano, Italy

Fundings from the European Research Council

Consolidator Grant

ENSURE ERC-2014-CoG No. 647554

INTER

Hosting Institution

Politecnico di Milano, Department of Energy, NanoLab

Principal Investigator Matteo Passoni

Team

- ΡI
- 2 associate professors
- 1 assistant professor
- 3 post-docs 3 PhD students
- MSc students
- support from NanoLab people

Enhanced TNSA via near-critical layer before the typical solid foil

Enhanced TNSA

Conventional TNSA

In turn you increase total number and maximum energy of the ions

Enhanced TNSA

 $t = 189 \, \text{fs}$

Conventional TNSA

Near-critical density for $\lambda \sim 0.8 \ \mu m$ is in between typical gas and solid densities: challenging to obtain

$$\rho_c(\lambda) \simeq \frac{1.87}{\lambda^2 [\mu m]} \left(\frac{A}{Z}\right) \frac{mg}{cm^3} \qquad \longrightarrow \qquad \lambda \sim 0.8 \mu m \qquad \rho_c \sim 6 \frac{mg}{cm^3}$$

Near-critical density for $\lambda \sim 0.8 \ \mu m$ is in between typical gas and solid densities: challenging to obtain

$$\rho_c(\lambda) \simeq \frac{1.87}{\lambda^2 [\mu m]} \left(\frac{A}{Z}\right) \frac{mg}{cm^3} \qquad \longrightarrow \qquad \lambda \sim 0.8 \mu m \qquad \rho_c \sim 6 \frac{mg}{cm^3}$$

Carbon foams are one of the few solid dare numeri: near-critical materials for λ ~ 0.8 μm range densità media raggio nanoparticelle

top view SEM image

cross section SEM image

via Pulsed Laser Deposition technique

POLITECNICO MILANO 1863

12

REF ZANI

Enhanced TNSA with ultra-low density foam-attached targets

carbon foam

µm-thick solid foil

4 µm

POLITECNICO MILANO 1863

13 REF PRAB PPCF

Experiments show a systematic increase of ion maximum energy and total charge up to x 1.7 up to x 7

G I S

Gwangju Institute of Science and Technology

POLITECNICO MILANO 1863

14

REF PPCF

Experiments show a systematic increase of ion maximum energy and total charge

up to x 2

maximum proton energy vs. foam thickness proton energy spectra 30 optimal $4 \ \mu m C$ foam on 1.5 $\mu m Al$ 1E11 H⁺ max. energy [MeV] Particles [1/MeV*sr] 631 631 631 631 631 25 1.5 µm Al, no foam value DA AGGIORNARE 20 15 10 no foam 5 10 12 6 8 0 2 16 24 28 8 12 20 4 Foam thickness [µm] Energy [MeV] Laser parameters **Target parameters** • 2 J on target • Al 1.5 µm substrate • 5 x 10²⁰ W/cm² • C 4,8,12 µm foam • 150 TW • 10 mg/cm³ foam density CHECK DENSITY • 2° incidence

up to x BOH

POLITECNICO MILANO 1863

A better theoretical understanding of the physics at play is crucial to optimize the acceleration

How does the nanostructure influence the interaction and the acceleration processes?

LOGO CINECA

3D Particle-In-Cell simulations

laser-plasma interaction

laser-driven ion acceleration

immagini boh

with the nanostructure

POLITECNICO MILANO 1863

16 REF EPJD + SCIREP

The nanostructure is obtained via a cluster-cluster aggregation model that mimics the foam growth

model vs. real

POLITECNICO MILANO 1863

17

REF SCIREP

3D PIC simulations to asses the influence of the nanostructure in the physical processes at play

homogeneous plasma

without substrate

notare che siamo vicino alla soglia di trasparenza

with substrate

a0 = 5,15,45 ne = 3nc sphere density 60nc raggio CHECK DENSITY

w = 5 lambd t = 30 fs P pol

> a0 = 4 ne = 2.29 nc 4 lambda thick sphere density raggio

POLITECNICO MILANO 1863

18

REF SCIREP

foam-like plasma

Già la propagazione viene modificata

homogeneous plasma

POLITECNICO MILANO 1863

19

REF SCIREP

Assorbimento boom con nano: sia elettroni che ioni, ma se prima gli ioni non assorbivano un tubo adesso tanto

foam-like plasma

t [λ/c]

REF SCIREP

homogeneous plasma

t [λ/c]

without substrate 0.8 0.8 0.6 a0 = 5E/Etot 0.6 E/Etot ne = 3nc0.4 0.4 0.2 0.2 0 0 15 20 25 30 35 0 5 10 30 35 0 10 15 20 25 5

POLITECNICO MILANO 1863

20

Lo interpretiamo con esplosione degli aggregati di nanoparticelle

homogeneous plasma

× [λ]

without substrate

POLITECNICO MILANO 1863

21

REF SCIREP

x [λ]

15

20

foam-like plasma

ne = 3nc

Abbiamo anche iniziato a esplorare l'accelerazione e dai primi risultati si vede una differenza significativa

homogeneous plasma

Assorbimenti

with substrate

POLITECNICO MILANO 1863

Spettrioni

with substrate

POLITECNICO MILANO 1863

più collimati con un plasma pulito con nano ci sono degli spot non esattamente a 0 gradi

F

POLITECNICO MILANO 1863

Applications: exploit the enhancement to enable applications given a ~10TW laser system

NEUTRONS

design of experimental setup

Application in materials science: Proton-Induced X-ray Emission (PIXE)

immagine complessiva di luca solo menzione rapida alle questioni challenging e al fatto che spettro exp può non essere male

POLITECNICO MILANO 1863

27 REF SCIREP SUBM

Application in nuclear engineering: compact laser-driven neutron sources

Li per adesso ma ci sono questioni da considerare

con energie moderate degli ioni (T=0.5, Max=7MeV (come il nostro PIC) si ha 1e-4 di conversione p->n)

CHECK DI QUESTO GRAFICO

SE è GIUSTO PERò FORSE SI Può DIRE

CHE LA DIPENDENZA DALLA DIVERGENZA

DEI PROT NON è GRANDE

T=0.5MeV, Emax=7MeV

Ottimizzazione del convertitore: questioni

Arianna Formenti

POLITECNICO MILANO 1863

Application in nuclear engineering: compact laser-driven neutron sources

design of a compact source

POLITECNICO MILANO 1863

Summary + conclusioni

la nano bisogna tenerla in conto per fare simulazioni con pretese realistiche

STIAMO LAVORANDO VERSO LE APPLICAZIONI "COMPATTE" E SEMBRA PROMETTENTE

POLITECNICO MILANO 1863

THE END THANK YOU!

arianna.formenti@polimi.it

www.ensure.polimi.it

www.nanolab.polimi.it

maybe its the density that changes

POLITECNICO MILANO 1863

POLITECNICO MILANO 1863

We produce carbon foams via the Pulsed Laser Deposition technique

