

Department of Energy

Enhanced laser-driven ion sources for nuclear and material science applications

Matteo Passoni Politecnico di Milano

Nuclear Photonics, Brasov, 28/06/2018

POLITECNICO MILANO 1863

- Largest university of engineering, architecture and design in Italy.
- More than 40000 students, ~1400 academic staff, 900 doctoral students
- 32 BSc, 34 MSc, 18 PhD programmes.

ENSURE

Exploring the New Science and engineering unveiled by Ultraintense ultrashort Radiation interaction with matter

ERC-2014-CoG No.647554

MILANO 1863

POLITECNICO

DIPARTIMENTO DI ENERGIA

ERC consolidator grant: 5 year project, from September 2015 to September 2020

erc

<u>Goal</u>: To Explore the New Science and engineering unveiled by Ultraintense, ultrashort Radiation interaction with mattEr

Hosted @ ManoLab , Department of Energy, Politecnico di Milano

Principal investigator: Matteo Passoni

<u>**Team</u>**: PI, 2 Associate Professor, 1 Assistant Professor, 3 Post-Docs, 3 PhDs + master students and support from NanoLab people</u>

www.ensure.polimi.it

The ENSURE team at Politecnico di Milano

Matteo Passoni Associate professor PI of ENSURE + ERC-POC INTER

Margherita Zavelani Associate professor

Andrea Pola Associate professor

Valeria Russo Assistant professor

Luca Fedeli Post-doc

Devid Dellasega Post-doc

Alessandro Maffini Post-doc

Andrea Pazzaglia PhD student

Arianna Formenti PhD student

Francesco Mirani PhD student

Francesca Arioli Master's student

ENSURE: Main fields of research

Theoretical & experimental investigation of **laser-driven ion acceleration**

Advanced target production

(low-density foams & multilayer targets) for laser-plasma interaction experiments

Application of laser-driven ion acceleration in **material & nuclear fields**

(e.g. Compact neutron sources, Laser-driven Ion Beam Analysis)

Target is the key:

Conventional TNSA

Enhanced TNSA

 $\hfill\square$ Near-critical layer onto a μm -thick foil

M. Passoni et al. Phys Rev Acc Beams 19.6 (2016)

Target is the key:

Near-critical layer

Conventional TNSA

Enhanced TNSA

Near-critical layer onto a μm-thick foil

□ More and hotter relativistic electrons

M. Passoni et al. Phys Rev Acc Beams 19.6 (2016)

Target is the key:

Conventional TNSA

The target is the key!

M. Passoni et al. Phys Rev Acc Beams 19.6 (2016)

Enhanced TNSA

 $\hfill\square$ Near-critical layer onto a μm -thick foil

More and hotter relativistic electrons

More ions at higher energy

Near-critical targets for laser-driven acceleration

 I_{laser} =10²⁰ W/cm² $\longrightarrow E_{laser}$ = 3 x 10¹¹ V/m = 50 X $E_{atomic} \longrightarrow$ Full ionization \longrightarrow Plasma!

Ion acceleration @ PULSER (GIST)

in collaboration with: I. W. Choi, C. H. Nam et al.

Role of target properties (s-pol, ~7 J, 3x10²⁰ Wcm⁻², 30° inc. angle)

Nearcritical foam thickness: AI (0.75 μm) + foam (6.8 mg/cm³, 0-36 μm)

- ☐ There is an **optimum** in near critical layer **thickness**
- □ Maximum proton energy enhanced by a factor ~ 1.7
- □ Number of proton enhanced by a factor ~ 7
- M. Passoni et al., *Phys. Rev. Accel. Beams* **19**, (2016) I. Prencipe et al., *Plasma Phys. Control. Fus.* **58** (2016)

Ion acceleration @ PULSER (GIST)

in collaboration with: I. W. Choi, C. H. Nam et al.

Role of pulse properties AI (0.75 µm) + foam (6.8 mg/cm³, 8 µm)

- **b** pulse **intensity**
- pulse polarization: s, p and circular polarization

Dependence on **polarization**:

- strong for AI foils
- reduced for foam targets

- foam vs AI: volume vs surface interaction
- irregular foam surface: polarization definition
- role of target nanostructure

POLITECNICO MILANO 1863

Near-critical targets for laser-driven acceleration

 I_{laser} =10²⁰ W/cm² $\longrightarrow E_{laser}$ = 3 x 10¹¹ V/m = 50 X $E_{atomic} \longrightarrow$ Full ionization \longrightarrow Plasma!

How to produce C foams: ns Pulsed Laser Deposition (PLD)

"atom by atom" deposition

"Nanoparticle" deposition

New experimental facilities @ Nanolab

fs-PLD interaction chamber

- PLD mode + Laser processing
- up to 4 targets
- Upstream + downstream pressure control
- □ Fast substrate heater
- Fully automated software

Coherent Astrella ™

- **Ti:Shappire** λ =800 nm
- □ Ep > **5 mJ**
- Pulse duration < 100 fs</p>
- □ Peak Power > 50 GW
- □ Rep Rate = 1000 Hz

New experimental facilities @ Nanolab

High Power Impulse Magnetron Sputtering (HiPIMS):

- Peak power density = 10³ W/cm²
- □ Peak current density = 1 10 A/cm²
- Two cathodes, multi-elemental targets
- Fully automated software

Combined fs-PLD & HiPIMS deposition techniques to fully **control target preparation**!

Foam property control with ns-PLD

ns-PLD process parameters

How to produce carbon foams

Aggregation model to study the foam growth

Diffusion-Limited Cluster-Cluster Aggregation (DLCCA):

- Brownian motion of particles 1)
- Particle aggregation in clusters by irreversible sticking 2)
- 3) Clusters deposition on substrate

Simulated Foam

Heigh [µm]

Particle In Cell (PIC) Simulations

Well established and powerful tool to study laser plasma interaction

Inclusion of the **nanostructure morphology** to properly model physical processes

L. Fedeli et al. Scientific Reports, volume 8, Article number: 3834 (2018)

Integrated numerical simulation of laser-ion app

A novel tool to study laser-driven ion sources for **nuclear** and **material science**

Laser-driven Particle Induced X-ray Emission (PIXE)

- Laser-driven PIXE:
 - Unconventional features of ion beam (broad spectrum, tunable energy, ns bunch duration)
 - ✓ Cheaper, portable PIXE setup

□ Commercial codes not ok for laser PIXE

Towards portable neutron sources

Compact neutron sources for material characterization

- fast-neutron spectroscopy
- neutron radiography
- Preliminary studies with coupled PIC Monte Carlo simulations
- □ Strong collaboration with industrial partners

□ See Maffini (P39), Mirani (P46) posters!

A. Tentori, *MSc thesis in Nuclear Engineering* (2018) F. Arioli, *MSc in Nuclear Engineering*, in preparation

Monday 10th - Wednesday 12th, **June 2019** Politecnico di Milano, **Milano, Italy**

Contact: matteo.passoni@polimi.it

ENSURE, ERC-2014-CoG No.647554

