

Simulations of Ion Beam Analysis with laser-driven proton sources at Politecnico di Milano

> Francesco Mirani Frascati, February 21st, 2018

The ENSURE team at Politecnico di Milano

Matteo Passoni Associate professor ERC-2014-CoG No. 647554 ERC POC INTER PROJECT

Margherita Zavelani-Rossi Associate professor

Luca Fedeli Post-doc

Devid Dellasega Post-doc

Alessandro Maffini Post-doc

Valeria Russo Researcher

Andrea Pazzaglia PhD student

Arianna Formenti PhD student

Francesco Mirani PhD student

sco Ident

POLITECNICO MILANO 1863

2

Main fields of research

 Theoretical & experimental investigation of laser-driven ion acceleration

 Fundamental physics and laboratory astrophysics (collisionless shock waves & laser-driven secondary radiation (e.g. Neutron))

Advanced target production (**low-density foams** & **multilayer targets**) for laser-plasma interaction experiments

 Application of TNSA scheme to material science

 Particle-In-Cell (PIC) simulations to study laser plasma interaction

Smile;)

 Z/λ

Open source codes:

 Y/λ

 Z/λ^0

- **Numerical Tools**
- Monte Carlo simulations of particles propagation through matter
- Open source code Geant 4

 Diffusion Limited Cluster-Cluster Aggregation (DLCA) to model the foam growing process

 Marconi @ CINECA, Bologna HPC facility - Intel OmniPath Cluster access through ISCRA C & LISA & PoliMi grants (~ 100 kCPUhours each)

Laser-driven ion sources: main features

Laser-driven ion sources: main features

- Proton bunches emitted along the target normal direction (few degrees' divergence)
- Energies from few MeV to almost 100 MeV
- Broad energy spectrum
- Well defined cut-off energy

Possible applications in material science

- Neutron source:
 - Neutron Activation Analysis (NAA)
 - Neutron Radiography

Particle Induced X-ray Emission (PIXE)

Particle Induced X-ray Emission (PIXE)

Particle Induced X-ray Emission (PIXE)

Synthetic X-ray spectrum from Monte Carlo simulations

Laser-driven PIXE

Laser-driven PIXE allows to retrieve target composition...

Element	W _{j, real} (%)	W _{j, laser} (%)	
Ni	40.0	41.6	
Cr	30.0	30.3	
Мо	30.0	28.1	

...with the same accuracy of traditional PIXE

Element	W _{j, real} (%)	W _{j, laser} (%)	W _{j, mono} (%)
Ni	40.0	41.6	40.5
Cr	30.0	30.3	29.8
Мо	30.0	28.1	29.7

... and what about stability with respect the incident spectrum parameters?

- <u>Homogeneous sample analysis</u> (sword scabbard composition)
- Pure exponential energy spectrum

... and what about stability with respect the incident spectrum parameters?

- Homogeneous sample analysis (sword scabbard composition)
- Pure exponential energy spectrum

Laser driven differential PIXE

Laser driven differential PIXE

• <u>Generic sample</u> (gilding layer)

Z. Smit, J. Istenic, and T. Knific. Plating of archaeological metallic objects – studies by differential pixe. Nuclear
Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, 266(10):2329 – 2333, 2008. Accelerators in Applied Research and Technology

...toward a more realistic laser-driven PIXE simulation...

Compact laser system

Laser-driven proton acceleration experiments with 10s
 TWs lasers documented in literature.

Proton energies suitable for PIXE:

M. Gauthier, et al. High repetition rate, multi-MeV proton source from cryogenic hydrogen jets. Applied Physics Letters, 111(11):114102, 2017.

Compact laser system

Laser-drinven proton acceleration experiments with 10s
 TWs lasers documented in literature.

Proton energies suitable for PIXE:

M. Gauthier, et al. High repetition rate, multi-MeV proton source from cryogenic hydrogen jets. Applied Physics Letters, 111(11):114102, 2017.

ALPHA 10/XS 45 TW Typical layout

Table size: 1.5 x 4.2 m² (4.9 x 13.8 ft²)

 10s TW compact / table-top systems are already available

To further increase the proton energy and number ...

M. Passoni, at al. Toward high-energy laser-driven ion beams: Nanostructured double-layer targets. Phys. Rev. Accel. Beams, 19:061301, Jun 2016.

1) Particle In Cell simulations

2) Choice of appropriate X-ray detectors

 Si(Li) detector <u>usually employed</u> in PIXE experiments are unsuitable for laser-driven PIXE

VS

Dead time ~ µs

X-ray emission time window ~ 10s ns

2) Choice of appropriate X-ray detectors

a) Passive X-ray Von Hamos spectromer

Lars Anklamm et al. A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory, 2014

b) Ultrafast X-ray CCD working in single shot X-ray absorption spectroscopy

Wei Hong, et al. Detailed calibration of the pi-lcx:1300 high performance single photon counting hard x-ray ccd camera. Chinese Physics B, 26(2):025204, 2017.

a) Full cylinder Von Hamos spectrometer configuration

• **Bragg reflection:** $n\lambda = 2dsin\theta$

b) In-air laser-driven PIXE with CCD: ...work in progress

Summary:

Extensive theoretical / numerical investigation of Laser-driven PIXE feasibility

- > Monte Carlo simulations with exponential, pure analytical proton energy spectra
- > Coupling of Monte Carlo simulations and Particle in Cell simulations
- Study of possible experimental setups

Laser-driven Particle Induced X-ray Emission is really possible!

More info on our website: <u>www.ensure.polimi.it</u>

francesco.mirani@polimi.ti

Thank you for your kind attention

[3] O. Smit: *Differential PIXE measurements of thin metal layers,* 2004

Differential PIXE with monoenergetic protons

POLITECNICO MILANO 1863

