

POLITECNICO MILANO 1863

First HiPIMS activities at Politecnico di Milano

D. Dellasega, F. Mirani, A. Maffini, A. Pazzaglia, M. Passoni Dipartimento di Energia, Politecnico di Milano, Milan, Italy

Innovative techniques of particle acceleration

Laser driven ion acceleration (TNSA): a non conventional technique to accelerate ions

Near-critical layer

Deposition of novel targets by HiPIMS

Ultralow dense layer

• Density 10 mg/cm³

Ultra porous C foam

• Deposited by PLD

Laser Pulse

Solid free standing layer

- Usually a thin metallic foil (e.g. Al, Ti, etc.)
- Layer thickness (10ns of nm up to 10 μm) influences max. energy of ions
- Roughness affects experiment reproducibility
- Possible presence of holes
- Need of carefull positioning

M. Passoni et al. *Phys Rev Acc Beams* **19.6** (2016) A. Macchi et al., Rev. Mod. Phys., 85 751 (2013)

HiPIMS apparatus @ POLIMI

Role of process parameters and deposition schemes

As a first attempt deposition of stainless steel investigating the role of process parameters

Apparatus Features

• Two 3 inch cathodes in sputter up configuration

• Near-critical layer (density of few

• More and hotter relativistic electrons

mg/cm³) micrometer thick

• More ions at higher energy

- Two generators with positive and negative polarity output
- Four inch anode as substrate holder

Enhanced TNSA

- Substrate heater up to 400° C
- Three process gas lines
- Four channel oscilloscope for monitoring of pulse current
- 1200 l/s TMP reach high and fast vacuum conditions

Pulse genetator features	Channel A 6 kV	Channel B 1.5 kV
Pulse output voltage	+/-1 kV	+/-1 kV
Pulse Time Conditions	UP+; UP-; BP	UP+; UP-; BP
HiPIMS ON time	$T_{on} + / - \ge 20 \ \mu s$	$T_{on} + / - \ge 20 \ \mu s$
HiPIMS OFF time	$T_{off} + / - \ge 20 \ \mu s$	$T_{\rm off} + /- \geq 20 \ \mu s$
HiPIMS freq. conditions	$\sum (T_{on} + T_{off}) \ge 500 \ \mu s$ (2 kHz)	
MF ON and OFF times	$T_{on/off} + / - \ge 5 \ \mu s$	$T_{on/off} + / - \ge 5 \ \mu s$
MF Frequency conditions	$\sum (T_{on} + T_{off}) \ge 20 \ \mu s$ (50 kHz)	

1. Two independent unipolar HiPIMS source

2. Unipolar HiPIMS source + Bias (properly synchronized)

Deposit target by HiPIMS

- Wide variety of materials • Different compositions
- Smooth films
- Direct deposition on the holder
- Need of free-standing films on mm sizes

- 3. Bipolar HiPIMS source + Bias (properly synchronized)
- 4. Superimposed Bipolar HiPIMS source + MF

Comparison with Pulsed Laser Deposition

Deposition of compact carbon coatings with two different high energy PVD techniques: HiPIMS and Pulsed Laser Deposition.

HiPIMS (target = Stainless Steel, P_{Ar} = 1.3 Pa, **I-V characteristics dcMS** (target = Stainless Steel, P_{Ar} = 1.3 Pa, $t_{dep} 40 min$) t_{dep} 40 min) $\Delta V_{lin} = 620 - 750$ V1 = 550 V V1 = 800 V, V2 = 50 V (bias), $t_{on} = 100 \ \mu s$, $t_{off} = 2400 \ \mu s$, $f = 400 \ Hz$ Cur 600 Voltage

V1 = 800 V, V2 = 50 V (bias),

 $t_{on} = 4 \times 25 \ \mu s BIPOLAR$

 $t_{off} = 600 \ \mu s$, f = 1600 Hz

V1 = 800 V, V2 = 50 V (bias),

 $t_{on} = 25 \ \mu s, t_{off} = 600 \ \mu s, f = 1600 \ Hz$

V1 = 800 V, V2 = 50 V (bias),

t_{off.2} = **2340 μs**, f = **1600 Hz**

N. Carolat

 $t_{on} = 4 \times 25 \ \mu s$ UNIPOLAR, $t_{off.1} = 20 \ \mu s$,

V1 = 1000 V, V2 = 200 V (bias), $t_{on} = 4 \times 25 \ \mu s \ UNIPOLAR, t_{off,1} = 20 \ \mu s,$ t_{off,2} = **2340 μs**, f = **1600 Hz**

 $\Delta V_{\mu} = 640 - 560$

100 ·

• 50-950

800

--- 100-1900

1000

╵_{┓╴⋑}╷╗╷╗╷╗╴╝

 $V1 = 650 \text{ V}, P_{Ar} = 0.9 \text{ Pa}, t_{on} = 25 \text{ } \mu\text{s}, t_{off} = 475$ μs, no bias

Preliminar Analysis

- Film morphology affected both by pulse voltage and bias
- Bipolar mode seems to have little effect compared with unipolar one
- Check of the I-V characteristics is a possible route to determine the different deposition regimes

Preliminar Analysis

- Amorphous compact morphology
- Bias greatly influences thickness 30 nm vs 60 nm
- Similar morphology compared with Pulsed Laser Deposition
- From Raman analysis Carbon deposited at higher energy with PLD

www.ensure.polimi.it