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What do we mean by “carbon foams” ? 
https://en.wikipedia.org/wiki/Carbon_nanofoam 

A.V. Rode et al., Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation, Appl. Phys. A 70 135 (2000) 



8 

What do we mean by “carbon foams” ? 
https://en.wikipedia.org/wiki/Carbon_nanofoam 

 Disordered, nanoscale structured material 
 (almost) Pure carbon 
 Void fraction ≈ 99%   density ≈ 10 mg/cm3  

In this talk, I will refer to “carbon foam” as: 

A.V. Rode et al., Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation, Appl. Phys. A 70 135 (2000) 
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Why do we care? 
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C foam for superintense laser-plasma experiments 
Ilaser=1020 W/cm2 Elaser = 3 x 1011 V/m = 50 X Eatomic Full ionization Plasma! 
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Foam-based targets for proton acceleration 

Ep=0.1-10 J 

τ=30 fs – 1 ps 
I=1018 – 1022 W/cm2 

Laser: 

Accelerated H+ 

Emax ≈ 10s MeV  
1010-1012 ions/bunch 
ps duration 

~ 10 mg/cm3 

C foam 

Double-layer target 

M. Passoni et al., Plasma Phys. Control. Fus. 56 (2014) 
I. Prencipe et al., Plasma Phys. Control. Fus. 58 (2016) 
M. Passoni et al., Phys. Rev. Accel. Beams 19, (2016) 

ERC-2014-CoG No.647554 
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~ 10 mg/cm3 

C foam 

Double-layer target 

M. Passoni et al., Plasma Phys. Control. Fus. 56 (2014) 
I. Prencipe et al., Plasma Phys. Control. Fus. 58 (2016) 
M. Passoni et al., Phys. Rev. Accel. Beams 19, (2016) 

ERC-2014-CoG No.647554 
ENSURE  C foam on ~µm thick foils 

 It’s not just a matter of density! 
(thickness, uniformity, nanostructure,…) 

 “Targetry” issues 
(fragile substrate, stresses, high rep rate,..)  
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• Reactive (O2) 
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Target 

λ= 266, 532, 1064 nm 

Fluence: 0.1 - 20 J/cm2 

Max rep. rate= 10 Hz 

Pulse duration= 7ns, energy=  0.1-2 J 
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Gas pressure Laser fluence 

Substrate 

Plasma 
plume 

target-to-substrate distance 

Laser Beam 

Background Gas 
• Inert (He, Ar..) 
• Reactive (O2) 

(almost any kind of substrate) 

“atom by atom” deposition “Nanoparticle” deposition 

Target 

λ= 266, 532, 1064 nm 

Fluence: 0.1 - 20 J/cm2 

Max rep. rate= 10 Hz 

Pulse duration= 7ns, energy=  0.1-2 J 
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What “foams” actually are made of? 

A. Zani et al., Carbon, 56 358 (2013) 



30 

What “foams” actually are made of? 

Elementary constituents: 
10-20 nm C nanoparticles 

A. Zani et al., Carbon, 56 358 (2013) 



31 

What “foams” actually are made of? 

Elementary constituents: 
10-20 nm C nanoparticles 

A. Zani et al., Carbon, 56 358 (2013) 

Crystalline structure: 
Topologically disordered domains,  
Size ~ 2nm  

C-C bonding: 
Nearly pure sp2  
odd-membered rings and 
few chain-like structures 

Vacuum G peak 

D band 
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Plume expansion and NPs synthesis 

Adapted from:  Arnolds et al., Appl. Phys. A 69 S87–S93 (1999) 
PLD plume dynamics & NP production 
are open research topics! 
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Plume expansion and NPs synthesis 

1) Adiabatic Expansion 
2) Shock wave formation 
3) Nanoparticle synthesis 
4) Nanoparticle aggregation 
5) Landing on substrate 

Adapted from:  Arnolds et al., Appl. Phys. A 69 S87–S93 (1999) 

For the purpose of this talk: 
 I won’t discuss SW formation and NP synthesis 
 I’ll consider C NPs as “LEGO bricks” to play with 

PLD plume dynamics in background 
gas is still an open research topic! 

A sketch of plume dynamics: 

 I’ll try to answer these questions: 
 What is the NPs aggregation dynamics ? 
 How aggregation dynamics controls foam properties? 
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P. Jensen, RMP 71 1695 (1999) 

Diffusive motion (“random walk”) of NPs + sticking 
Diffusion happens on substrate  2D physics 
In simulations, one NP at a time 

In the literature, typically: 
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P. Jensen, RMP 71 1695 (1999) 

Diffusive motion (“random walk”) of NPs + sticking 
Diffusion happens on substrate  2D physics 
In simulations, one NP at a time 

In the literature, typically: 

2D Diffusion Limited Aggregation 
(2D-DLA) 
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Is 2D-DLA ok to describe foam growth? 
With 2D-DLA, aggregate grow like this: 
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Is 2D-DLA ok to describe foam growth? 
With 2D-DLA, aggregate grow like this: 

We can test experimentally if 2D-DLA is ok: 

10 
shots 

20 
shots 

50 
shots 

500 
shots 

200 
shots 

100 
shots 

2D-DLA predicts: 

1) Very small aggregates for few shots 

2) Aggregate size will increase with increasing shots 
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1) What arrive on the substrate are µm-sized aggregates!  

2) Aggregates coalesce but having almost constant size 

10 
shots 

20 
shots 

50 
shots 

500 
shots 

200 
shots 

100 
shots 

2D-DLA fails! 
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Few-shot experiments: 
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We have ruled out 2D diffusion limited aggregation 
We have collected a valuable set of experimental data… 

Few-shot experiments: 

Models: 
 The simplest: 3D DLA 

   Computationally light, well know 
   One NP at the time  not ok for in-flight aggregation 

 Full-Physics Diffusion Limited Cluster Cluster Aggregation 
   Keeps track each aggregate and reproduce the real dynamics 
   Computational cost explodes with N and box dimension 

 We can simulate numerically the aggregation 
 Using different models, i.e. different “physics” 
 Compare with experimental data 
 And get some information about the real physics 

Idea: 

 Simplified Diffusion Limited Cluster Cluster Aggregation 
   Unable to describe the real dynamics 
    Acceptable computational cost 
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1) Nanoparticles  
in Brownian motion 

Simplified Diffusion Limited Cluster-Cluster Aggregation 
To reduce computational cost, aggregates are synthetized in a sub-box 
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1) Nanoparticles  
in Brownian motion 

2) Irreversible sticking of NPs 

3) Formation of aggregates 
(10-1000 NPs) 

Simplified Diffusion Limited Cluster-Cluster Aggregation 
To reduce computational cost, aggregates are synthetized in a sub-box 
Aggregate size distribution is given as an input 

in this sense, it is not predictive 
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4) Aggregates deposited on substrate 

Height [μm] 
0 

8
  

4 

1) Nanoparticles  
in Brownian motion 

2) Irreversible sticking of NPs 

3) Formation of aggregates 
(10-1000 NPs) 

Simplified Diffusion Limited Cluster-Cluster Aggregation 
To reduce computational cost, aggregates are synthetized in a sub-box 
Aggregate size distribution is given as an input 

in this sense, it is not predictive 
Aggregates are deposited one by one 

 no information about the aggregation time scale 
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“Real growth” by PLD experiments 
10 
shots 
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“Real growth” by PLD experiments 
10 
shots 
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“Real growth” by PLD experiments 
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shots 



DLA vs DLCCA vs Reality 

61 
L. Fedeli et al., Sci. Rep. (2018) 8:3834 

C foams DLCCA simulation 

3D-DLA simulation C nanotrees 
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“numerical” foams are used in Laser-Plasma simulation 

L. Fedeli et al., Sci. Rep. (2018) 8:3834 
Arianna Formenti’s NanolabTak (23/04/18) 
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 Simplified-DLCCA reproduces foam morphology  the physics behind foam aggregation  
But: 
1) It is not predictive 
2) Doesn’t describe the dynamics (e.g. the aggregation timescale) 

 
L. Fedeli et al., Sci. Rep. (2018) 8:3834 

C foams DLCCA simulation 

3D-DLA simulation C nanotrees 
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1) Few-shots experiments: “in-flight” aggregation 
2) Simplified-physics simulation: it’s a DLCCA process 

What we have learned so far: 

Let’s recap…. 
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Smoluchowski coagulation equation (1916) 

A scaling law for the aggregate size 

Can be solved analytically under some assumption: 
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Smoluchowski coagulation equation (1916) 

Coagulation driven by diffusion:  

A scaling law for the aggregate size 

Fractal scaling: 

Can be solved analytically under some assumption: 

2R depends on taggr with a power law 
b<1; typically b ≈ 0.5 for DLCCA 
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1) Few-shots experiments: “in-flight” aggregation 
2) Simplified-physics simulation: it’s a DLCCA process 

 Prediction of aggregate properties: average diameter 2R? 
 “in-flight” aggregation dynamics: time-scale taggr ? 
  Can we control this dynamics with PLD process parameters? 

What we have learned so far: 

Let’s recap…. 

What is still missing: 

Our next steps: 
1st step: find a relation between 2R and taggr 
2nd step: make a model to have an hypothesis on taggr 
3rd step: test the hypothesis in PLD experiments: 
 can we predict  2R (and taggr) as a function of PLD parameters? 
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Let’s come back to plume dynamics….. 

1) Adiabatic Expansion 
2) Shock wave formation 
3) Nanoparticle synthesis 
4) Nanoparticle aggregation 
5) Landing on substrate 

Adapted from:  Arnolds et al., Appl. Phys. A 69 S87–S93 (1999) 
PLD plume dynamics in background 
gas is still an open research topic! 

A sketch of plume dynamics: 
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A model (I) to find the aggregation time 
nth laser shot on target 

NPs generation 

t=0 

Aggregate landing 
time 
of  

flight 

(n+1)th  laser shot on target 

t ≈0 
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nth Shock wave 

t= 
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 t= 

Adiabatic expansion 
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1) nth shock wave drags aggregates  
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 t= 

Adiabatic expansion 
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2) Aggregates coalesce during the flight 

t.o.f. hypotheses (I) : 

To calculate t.o.f.  : 

us 

u1  
p1, T1 

u2 =0 

p2 =1000 Pa 

T1=300K 

Stokes-Einstein equation 

Rankine –Hugoniot  equations 

(..under some assumption…) 

Can be controlled! Can be measured! 
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1) Few-shots experiments: “in-flight” aggregation 
2) Simplified-physics simulation: it’s a DLCCA process 

 Prediction of aggregate properties: average diameter 2R? 
 “in-flight” aggregation dynamics: time-scale taggr ? 
  Can we control this dynamics with PLD process parameters? 

What we have learned so far: 

Let’s recap…. 

What is still missing: 

Our next steps: 
1st step: find a relation between 2R and taggr 
2nd step: make a model to have an hypothesis on taggr 
3rd step: test the hypothesis in PLD experiments: 
 can we predict  2R (and taggr) as a function of PLD parameters? 

? 
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dts = 35 mm dts = 45 mm Dts = 55 mm Dts = 65 mm 

dts dts 

10 shots, 10 Hz  

Let’s test the t.o.f. hypotesis…  
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 Less coverage because of solid angle reduction 

 Size  almost  independent  from  dts 

Let’s test the t.o.f. hypotesis…  

t.o.f. hypothesis disproved!!!  
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A model (II) to find the aggregation time 
nth laser shot on target 

NPs generation 

t=0 

Adiabatic expansion 

(n+1)th  laser shot on target 

t ≈0 

t= 
1

𝑅𝑅.𝑅𝑅.
 ≈ 

Hypotheses (II): 

1) nth SW too quick to drag aggregates  
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A model (II) to find the aggregation time 
nth laser shot on target 

NPs generation 

t=0 

Adiabatic expansion 

Aggregate landing 

Ag
gr

eg
at

io
n 

(n+1)th  laser shot on target 

t ≈0 

1) nth SW too quick to drag aggregates  
2) Aggregates coalesce after nth SW is gone 
3) (n+1)th SW drags aggregates to substrate 

Hypotheses (II): 

(n+1)th  Shock wave 

t= 
1

𝑅𝑅.𝑅𝑅.
 

t= 
1

𝑅𝑅.𝑅𝑅.
+ 𝑡𝑡𝑡𝑡𝑡𝑡 ≈

1
𝑅𝑅.𝑅𝑅.

 

≈ 
(Adiabatic expansion + NPs generation) 
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Rep. Rate hypotheses: 

Can be controlled! Can be measured! 

1) nth SW too quick to drag aggregates  
2) Aggregates coalesce after nth SW is gone 
3) (n+1)th SW drags aggregates to substrate 

10 shots 
dts = 45 mm 
Rep. Rate = 10 Hz, 5 Hz, 2 Hz, 1 Hz, 0.5 Hz, 0.2 Hz 
Shot-to-shot time= 0.1 s, 0.2 s, 0.5 s, 1 s, 2 s, 5 s  

PLD parameters: 
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Let’s test the “repetition rate” hypotesis…  

 Average size 2R significantly affected by shot-to-shot time 
 Experimental points nicely fitted by a power law! 

R.R. hypothesis confirmed 

? 
expected b ≈ 0.5 
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A summary: 

2D diffusion-limited aggregation on substrate cannot describe foam growth  

A model to describes aggregation dynamics 

Aggregates generated by the nth shot are dragged by (n+1)th shock wave   

Aggregation timescale is given by the shot-to-shot interval 

Aggregates size depends on Rep. Rate and not on dts 

In the literature, mostly 2D-DLA 

There’s still work to do 

Why the exponent in 2R scaling law is roughly half than expected? 
Does the model work for other materials and deposition conditions? 
 … even in different PLD regimes? 

We tried to answer to these questions: 
How NPs aggregates and produce a foam? 
How aggregation dynamics controls foam properties? 
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… a brand-new fs-
PLD is waiting for us! 
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More info on our website 

www.ensure.polimi.it 
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