

Advances in superintense laser interaction with nanostructured foams

Matteo Passoni Trento, 15/09/2017

Aims and outline of the talk

- Introduction to superintense laser-matter interaction
- Superintense laser-driven ion acceleration
- The ENSURE and INTER projects @ POLIMI

- Laser-ion acceleration with multi-layer, nanostructured foam-based targets

- Concluding remarks

Superintense laser-matter interaction

New physics available by progress in laser technology

- (1) CUOS: Center for UltrafastOptical Science(University Michigan)
- (2) Apollon Laser, Centre Interdisciplinaire Lumière Extrême (France)
- (3) Extreme Light Infastructure (EU) https://eli-laser.eu/

Important laser quantities

Typical laser parameters with Chirped Pulse Amplification (since '80s)

Laser wavelength (μ m): \approx 1 (Nd-Yag), 0.8 (Ti-Sa), \approx 10 (CO₂)

```
Energy (per pulse): 10<sup>-1</sup> - 10<sup>3</sup> J
```

Pulse duration: $\approx 10 - 10^3$ fs (at $\lambda = 1 \ \mu$ m, $\tau = c/\lambda = 3.3$ fs)

Power: \approx 100 TW - few PW (PW lines now available)

Spot size at focus: down to diffraction limit \rightarrow typically ϕ < 10 μ m

Intensity (power per unit area): 10¹⁸ W/cm² up to 10²² W/cm²

From huge facilities.....

Nova laser, LLNL, 1984

... to table-top systems!

Commercial TW class laser, 2010s

POLITECNICO MILANO 1863

The strength of laser fields:

Laser field vs. "relativistic" field

Reports on Progress in Physics 75(5), 056401 (2012)

ERC-2014-CoG No. 647554

Laser-driven ion acceleration

A non conventional way to accelerate heavy charged particle beams

A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys., 85 751 (2013)

Conventional ion accelerators:

High-energy particle beams crucial for:

- Medicine: radiotherapy, nuclear diagnostics,...
- Material engineering: ion beam analysis, implantation
- Nuclear engineering: Inertial Confinement Fusion,...
- Basic science: particle & high energy physics,...

CNAO Synchrotron (Pavia)

Laser-driven ion accelerator:

Appealing potential:

- Compactness
- Cost effectiveness
- Flexibility

Critical issues:

- Gain control of the process
- Increase efficiency/performance
- Limitation and cost of lasers

Novel targets can be the key!

I. Prencipe et al, High Power Laser Science and Engineering, 5 1 (2017)

The ENSURE project @ Politecnico di Milano⁸

Laser-driven ion acceleration

Theoretical/numerical & experimental investigation

Materials science

Development of low-density foams & advanced targets for laser-plasma experiments

Applications in materials and nuclear science

Materials characterization (e.g. PIXE) with laser-driven ions Secondary neutron sources for radiography and detection[...]

Fundamental physics and laboratory astrophysics

Laser interaction with (near-critical) nanostructured plasmas Collisionless shock acceleration of ions

The ENSURE team @ Politecnico di Milano

ERC-2014-CoG No. 647554

The ENSURE team @ Politecnico di Milano

Matteo Passoni Associate professor ERC-2014-CoG No.647554

Margherita Zavelani-Rossi Associate professor

10

Valeria Russo Researcher

4 Post-docs

D. Dellasega

A. Maffini

L. Fedeli

L. Cialfi

3 PhD students

A. Pazzaglia

F. Mirani

POLITECNICO MILANO 1863

Enhanced Target Normal Sheath Acceleration

Conventional Target Accelerated lons Laser Pulse Fast Electrons Multi-layer near critical Target Near-critical plasma Laser Pulse Accelerated lons Laser Pulse Fast Electrons

Solid Foil Surface interaction mechanisms

> Target Normal Sheath Acceleration (TNSA)

Solid Foil + Low Density Layer Volume & Surface Interaction Mechanisms

- Higher laser energy absorption
- Enhanced fast electron production
- Enhanced number and maximum energy
- of accelerated ions

T. Nakamura et al., Phys. Plasmas, 17 113107 (2010)

A. Sgattoni *et al.*, Phys. Rev. E, 85 036405 (2012)

POLITECNICO MILANO 1863

Laser interaction with near-critical plasmas is interesting for several applications...

Why bother with near-critical plasmas?

Several interesting applications:

- Enhanced ion acceleration
- Laboratory astrophysics
- γ-ray sources
- Inertial confinement fusion
- Electron acceleration

ERC-2014-CoG No. 647554

... from near critical plasma to low density materials

Idealized modeling vs "realistic" modeling

uniform plasmas

nanostructured plasmas

POLITECNICO MILANO 1863

Idealized modeling

Laser propagation in uniform and nanostructured near-critical plasmas

L.Fedeli, A.Formenti, C.E.Bottani & M.Passoni Topical Issue on "Relativistic Laser Plasma Interactions", Europ. Phys. Journal D (2017)

Electron heating in foam-attached targets L.Cialfi, L.Fedeli & M.Passoni Phys.Rev.E 94 (2016)

https://github.com/ALaDyn/piccante

¹⁶ Wide range of laser intensities and average densities

$$\frac{n}{n} = \frac{n_e / n_c}{\sqrt{1 + a_0^2 / 2}}$$

¹⁷ Wide range of laser intensities and average densities

$$\bar{n} = \frac{n_e / n_c}{\sqrt{1 + a_0^2 / 2}}$$

Main differences appear for partitioning of absorbed energy...

x/λ

...and for the tail of electron energy spectra

POLITECNICO MILANO 1863

A very similar approach was followed to simulated electron heating in near-critical foam-attached targets

e⁻ temperature from PIC sim.

Benchmark with exp.

I.Prencipe et al. PPCF 58 (2016) M.Passoni et al. PRAB 19 (2016)

*quasi-static Passoni-Lontano model Phys. Rev. Lett. 101 (2008)

ERC-2014-CoG No. 647554

"Realistic" modeling based on DLA

Diffusion Limited Aggregation (DLA) A simple and very well studied model to reproduce structures resulting from aggregation phenomena.

Witten&Sander, PRL 47, 1981

Ion acceleration with foam-based targets ²²

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 08 tp

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 12 tp

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 16 tp

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 20 tp

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 24 tp

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 28 tp

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 32 tp

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 36 tp

Example of a 3D PIC simulation with a nanostructured foam plasma

T = 40 tp

"Realistic" modeling based on DLA

Differences in the simulated ion spectra!

An improved realistic foam model

A model more closely based on the physics of Pulsed Laser Deposition...

Improved model

MD = 1 mm MD = 4 mm ET = 5.00 K MEM Mage 50.00 K M MD = 4 mm ET = 5.00 K MEM Mage 50.00 K M MD = 4 mm ET = 5.00 K MEM

Real foam!

Development of advanced targets

NanoLab NanoLab@POLIMI facilities and infrastructures:

Two ns-Pulsed laser deposition (PLD) systems Thermal treatment systems

SEM, STM, AFM microscopy Raman & Brillouin spectroscopy

Pulsed Laser Deposition (PLD) of nanostructured targets

Experimental: new labs @ POLIMI!

Yesterday (2016)

Tomorrow (within 2017)

New techniques to improve capability in advanced target production:

- femtosecond PLD
- HiPIMS

POLITECNICO MILANO 1863

Next steps: fs-PLD under development

Coherent "Astrella"

- Tabletop laser
- τ < 100 fs
- E_p > 5 mJ

Femto-machining and laser processing

- Femtosecond PLD
 - inherent production of NPs
 - New frontiers in foam production?

ns PLD in a background gas

Foam property control

PLD process parameters

Building blocks: carbon nanoparticle

Elementary constituents:

10-20 nm nanoparticles

<u>C-C bonding:</u>

Nearly pure sp² odd-membered rings and few chain-like structures

Crystalline structure:

Topologically disordered domains, Size ~ 2nm

A. Zani et al., Carbon, 56 358 (2013)

Observing the foam growth process....

Role of process parameters - pressure

Tuning a single parameter may not be enough....

Same density = $1.5 n_c$

Same thickness $\approx 8 \ \mu m$

- F = 1.1 J/cm²
- P = 100 Pa Ar
- $d_{ts} = 8.5 \text{ cm}$

- F = 1.4 J/cm²
- P = 500 Pa Ar
- $d_{ts} = 4.5 \text{ cm}$

Better uniformity & coverage!

POLITECNICO MILANO 1863

ERC-2014-CoG No. 647554

Towards "thinner" foams...

1) Decreasing deposition time might not be enough!

2) Understanding foam grow vs process parameters is crucial

New multilayer target development

Double side depositionon a ultra-thin C layer (100 nm)in collaInterest: laser induced electrostatic shock generationA. Mor

in collaboration with: A. Morace

Ion acceleration with foam-based targets ⁴⁴

Target preparation, experiments on laser facilities and simulations

-1.4 -0.7 0 0.1 1.4 2

Experiments on laser facilities

Ion acceleration experiments:

- Performed at **GIST** (Rep. of Korea) in 2015-2016
- Performed at HZDR (Germany) in 2017
- Performed at ILE (Osaka) in 2017

Setup of an ion acceleration experiment:

Effects of advanced targets:

Acceleration experiment @ Pulser GIST

I. Prencipe *et al.*, Plasma Phys. Control. Fusion, 58 034019 (2016) M. Passoni *et al.*, Phys. Rev. Acc. Beams, 19 061301 (2016)

Foam: PLD parameters

- E=130 mJ
- P=500 Pa Ar
- d_{ts}=4.5 cm
- thickness = 8, 12, 18, 36 μm
- Substrate = AI 0.75 μm

Ion acceleration: laser parameters

- Energy on target = 8 J
- Intensity = $0.5 \ 10^{20} 5 \ 10^{20} \ W/cm^2$
- Angle of incidence = 30°

in collaboration with:

I. W. Choi, C. H. Nam et al.

Higher ion energies using thinner foams

Acceleration experiment @ Pulser GIST

Insensible respect to polarization (volume interaction)

Ion acceleration @ DRACO 150 TW in collaboration with: (preliminary data!) I. Prencipe, T. Cowan, U. Schram et al. Laser parameters @ Draco (HZDR, Dresden) 30 Energy on target = 2 Jmm C foam on 1.5 mm Al H⁺ max. energy [MeV] 25 1.5 mm Al, no foam Intensity = up to $5 \times 10^{20} \text{ W/cm}^2$ Angle of incidence = 2° 20

15

10

5

8

4

12

16

Energy [MeV]

- Foam PLD parameters $F = 2.1 \text{ J/cm}^2$
- P = 1000 Pa Ar
- $d_{ts} = 4.5 \text{ cm}$

5

0

2

4

6

Foam thickness [µm]

Substrate = Al 1.5 µm

POLITECNICO MILANO 1863

8

10

12

ERC-2014-CoG No. 647554

20

24

An example of application:

Material characterization & processing with laser-driven ion beams

- Ion beam analysis: RBS, NRA, PIXE,...
- Neutron imaging and radiography....

- Ion implantation
- Radiation damaging...

Laser-driven ion beams may ensure major advantages!

F. Mirani, Master thesis in Nuclear Engineering (2017)

Another example of application:

Towards a portable neutron source

50

2017/2018 : pulsed neutron generation

2017/2018 : compact ion and neutron sources for materials characterization

Conclusions

- Nanostructured foams are one of the few ways to obtain a controlled near-critical plasma
- simulations to understand how this affects lasernanostructured plasma interaction; nanostructure may affect experimental observables
- Production of multilayers targets composed of near critical carbon foam 4 um thick
- Promising results in laser-ion acceleration experiments
- Laser-ions can be interesting in materials and nuclear sciences

Thanks for your attention!

www.ensure.polimi.it

