

Nanosecond Pulsed Laser Deposition of ultra-low density carbon foams for laser-driven ion acceleration

Alessandro Maffini (Politecnico di Milano) Marseille, 08/09/2017

POLITECNICO MILANO 1863

Politecnico di Milano (POLIMI) www.polimi.it

- Largest technical university in Italy, 6th top scoring in Europe
- More than 35'000 students, about 1400 faculty staff
- 32 BSc programmes, 34 MSc programmes, 18 PhD programmes
- 24 ERC projects hosted since 2008

ENSURE

Exploring the New Science and engineering unveiled by Ultraintense ultrashort Radiation interaction with matter

ERC-2014-CoG No.647554

ERC consolidator grant: 5 year project, from September 2015 to September 2020

<u>Goal</u>: To Explore the New Science and engineering unveiled by Ultraintense, ultrashort Radiation interaction with mattEr

Hosted @ ManoLab , Energy department, Politecnico di Milano

Principal investigator: **Matteo Passoni,** Associate professor

<u>**Team</u>**: 2 Associate Professor, 1 Assistant Professor, 4 Post-Docs, 3 PhDs + master students and support from NanoLab people</u>

ENSURE

Exploring the New Science and engineering unveiled by Ultraintense ultrashort Radiation interaction with mattEr

Laser-matter interaction is a cornerstone of ENSURE

Laser-driven particle acceleration

Ultraintense, ultrashort pulses on solid targets

- Theoretical/Numerical investigation
- Experimental campaigns

Pulsed Laser Deposition

- Mostly <u>ns-PLD</u> so far
- fs-PLD under development

ENSURE

Exploring the New Science and engineering unveiled by Ultraintense ultrashort Radiation interaction with matter

Laser-matter interaction is a cornerstone of ENSURE

erc

Laser-driven particle acceleration

Ultraintense, ultrashort pulses on solid targets

- Theoretical/Numerical investigation
- Experimental campaigns

Pulsed Laser Deposition

POLITECNICO

DIPARTIMENTO DI ENERGIA

MILANO 1863

- Mostly <u>ns-PLD</u> so far
- fs-PLD under development

Laser parameters:

 $E_p = 0.1-10 \text{ J}$ $\tau = 30 \text{ fs- 1 ps}$ $I = 10^{18} - 10^{22} \text{ W/cm}^2$

Accelerated ions

 E_{max} ≈ 60 MeV (H⁺) 10¹⁰-10¹² ions/bunch ps duration, good collimation

$$\begin{split} & \mathsf{E}_{\mathsf{p}} \text{= } 0.1\text{--}10 \text{ J} \\ & \tau \text{= } 30 \text{ fs- }1 \text{ ps} \\ & \mathbf{I} \text{= } 10^{18} \text{--} 10^{22} \text{ W/cm}^2 \end{split}$$

Accelerated ions

 E_{max} ≈ 60 MeV (H⁺) 10¹⁰-10¹² ions/bunch ps duration, good collimation

We want Laser-driven ion beams ...

- Cancer Hadrontherapy
- Material science
- Non-destructive diagnostics (e.g. PIXE)
- Laser-driven nuclear physics
- ...And much more!

Laser parameters:

$$\begin{split} & \mathsf{E}_{\mathsf{p}} \text{= } 0.1\text{--}10 \text{ J} \\ & \tau \text{= } 30 \text{ fs- }1 \text{ ps} \\ & \mathbf{I} \text{= } 10^{18} \text{--} 10^{22} \text{ W/cm}^2 \end{split}$$

Accelerated ions

E_{max} ≈ 60 MeV (H⁺) 10¹⁰-10¹² ions/bunch ps duration, good collimation

We want Laser-driven ion beams ...

- Cancer Hadrontherapy
- Material science
- Non-destructive diagnostics (e.g. PIXE)
- Laser-driven nuclear physics
- ...And much more!

....but there are **issues to be addressed**

- Better understanding
- Increase E_{max}
- Increase ion number
- Increase **rep. rate** (up to 10 Hz and more)

Laser parameters:

$$\begin{split} & \mathsf{E}_{\mathsf{p}} \text{= } 0.1\text{--}10 \text{ J} \\ & \tau \text{= } 30 \text{ fs- }1 \text{ ps} \\ & \mathbf{I} \text{= } 10^{18} \text{--} 10^{22} \text{ W/cm}^2 \end{split}$$

Accelerated ions

E_{max} ≈ 60 MeV (H⁺) 10¹⁰-10¹² ions/bunch ps duration, good collimation

We want Laser-driven ion beams ...

- Cancer Hadrontherapy
- Material science
- Non-destructive diagnostics (e.g. PIXE)
- Laser-driven nuclear physics
- ...And much more!

....but there are **issues to be addressed**

- Better understanding
- Increase E_{max}
- Increase ion number
- Increase **rep. rate** (up to 10 Hz and more)

Strategies:

- Progress in laser technology
- Deeper theoretical comprehension
- Novel target concepts!

Laser parameters:

$$\begin{split} & E_p = 0.1\text{-}10 \text{ J} \\ & \tau = 30 \text{ fs- 1 ps} \\ & \mathbf{I} = 10^{18} - 10^{22} \text{ W/cm}^2 \end{split}$$

Accelerated ions

 $E_{max} \approx 60 \text{ MeV (H}^+)$ 10¹⁰-10¹² ions/bunch ps duration, good collimation

We want Laser-driven ion **beams**...

- Cancer Hadrontherapy
- Material science
- Non-destructive diagnostics (e.g. PIXE)
- Laser-driven nuclear physics
- ...And much more!

....but there are **issues to be addressed**

- Better understanding
- Increase E_{max}
- Increase ion number
- Increase rep. rate (up to 10 Hz and more)

Strategies:

- Progress in laser technology
- Deeper theoretical comprehension

Novel target concepts!

 I_{laser} =10²⁰ W/cm² \longrightarrow E_{laser} = 3 x 10¹¹ V/m = 50 X E_{atomic} \longrightarrow Full ionization!

Foam-attached targets for Enhanced-TNSA

Conventional target

(Micrometric thick solid foil)

1) <u>n >> nc: Surface interaction</u>

- 2) Hot e⁻ population is excited
- 3) Electron sheath beneath the target
- 4) Quasi-static accelerating field arises
- 5) H⁺ contaminants accelerated

Target Normal Sheath Acceleration (TNSA)

T. Nakamura et al., Phys. Plasmas, 17 113107 (2010)

Foam-attached targets for Enhanced-TNSA

Conventional target

(Micrometric thick solid foil)

1) <u>n >> nc: Surface interaction</u>

- 2) Hot e⁻ population is excited
- 3) Electron sheath beneath the target
- 4) Quasi-static accelerating field arises
- 5) H⁺ contaminants accelerated

Target Normal Sheath Acceleration (TNSA)

Advanced target (Multi-layer, Foam-attached micrometric foil)

1) <u>n ≈ nc: Volume interaction</u>

- 2) \uparrow Energy conversion, \uparrow Hot e⁻ temperature
- 3) More e^{-} in the electron sheath
- 4) Stronger accelerating field
- 5) Accelerating process is enhanced

T. Nakamura et al., Phys. Plasmas, 17 113107 (2010)

Near-critical layer requirements

- 1. Near-critical <u>density</u> (ρ ≈10 mg/cm³)
- 2. Micrometric <u>thickness</u> (few μm up to tens of μm)
- **3.** <u>Homogeneity</u> on the laser spot size scale ($\approx 5 \ \mu m$)
- 4. <u>Uniformity</u> on the target size scale (≈ 5 cm)
- 5. Compatibility with **fragile/thin substrates** (≈ 100 nm)
- 6. Suitable for high rep. rate experiments (up to kHz!)

Near-critical layer requirements

- 1. Near-critical <u>density</u> (ρ ≈10 mg/cm³)
- 2. Micrometric <u>thickness</u> (few μm up to tens of μm)
- **3.** <u>Homogeneity</u> on the laser spot size scale (\approx 5 μ m)
- 4. <u>Uniformity</u> on the target size scale (≈ 5 cm)
- 5. Compatibility with **fragile/thin substrates** (≈ 100 nm)
- 6. Suitable for high rep. rate experiments (up to kHz!)

Pulsed Laser Deposition of void-rich, **carbon foam**-like structures!

A.V. Rode, E.G. Gamaly and B. Luther-Davies, App. Phys. A 70 135-144 (2000)

A. Zani et al., Carbon, **56** 358 (2013)
I. Prencipe et al., Plasma Phys. Control. Fusion **58** (2016) 034019

ns Pulsed Laser Deposition (PLD) in a background gas

Foam property control

Nano-scale

- Crystalline structure
- Composition

Micro-scale

- Average density
- Morphology

Macro-scale

- Uniformity
- Thickness profile

Foam property control

PLD process parameters

How the foam looks like...

Building blocks: carbon nanoparticle

Elementary constituents:

10-20 nm nanoparticles

C-C bonding:

Nearly pure sp² odd-membered rings and few chain-like structures

Crystalline structure:

Topologically disordered domains, Size ~ 2nm

A. Zani et al., Carbon, 56 358 (2013)

Role of process parameters - pressure

Tuning a single parameter may not be enough....

Tuning a single parameter may not be enough....

0th order solution: decreasing deposition time

0th order solution: decreasing deposition time

Nominal thickness $\approx 4 \ \mu m$

1) Decreasing deposition time might not be enough...

0th order solution: decreasing deposition time

Nominal thickness $\approx 4 \ \mu m$

Nominal thickness \approx 4 µm

Decreasing deposition time might not be enough...
 ↑ Fluence & ↑ Background pressure!

0th order solution: decreasing deposition time

Nominal thickness \approx 4 μ m

Nominal thickness $\approx 4 \ \mu m$

1) Decreasing deposition time might not be enough...

2) ↑ Fluence & ↑ Background pressure!

3) How does the foam grow?

Observing the foam growth process....

lag = 10.00 K X

2 µm

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

1) Brownian motion of nanoparticles (15 nm)

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

POLITECNICO MILANO 1863

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

Real Foam

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

Real Foam

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

Real Foam

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

Real Foam

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

Real Foam

Diffusion Limited Cluster-Cluster Aggregation (DLCA)

Real Foam

Laser-driven acceleration experiments with foams

2014/2015: enhanced TNSA

May 2017: ion acceleration & physics of irradiated near-critical plasmas

2017/2018: collision-less shocks & ps laser interaction with nanostructured foams

2017/2018 : pulsed neutron generation

2017/2018 : compact ion and neutron sources for materials characterization

M. Passoni et al., *Plasma Phys. Control. Fusion* 56 (2014) 045001
I. Prencipe et al., *Plasma Phys. Control. Fusion* 58 (2016) 034019
M. Passoni et al., *Phys. Rev. Accel. Beams* 19, (2016) 061301

Next steps: advanced target development

Double side deposition on a ultra-thin CH layer (100 nm) Interest: laser induced electrostatic shock generation

Next steps: functionally graded foams

Next steps: metallic and CH foams

Gold Foam: PLD parameters

- E=100 mJ
- P=1000 Pa Ar
- $d_{ts} = 5 \text{ cm}$

Courtesy of L. Mascaretti

POLITECNICO MILANO 1863

Next steps: fs-PLD under development

Coherent "Astrella"

- Tabletop laser
- τ < 100 fs
- $E_p > 5 mJ$

Femto-machining and laser processing

Femtosecond PLD

- inherent production of NPs
- New frontiers in foam production?

Acknowledgment

The "ENSURE" team

M. Passoni

V. Russo

M. Zavelani-Rossi

F. Mirani

ERC-2014-CoG No.647554 **ENSURE**

Acknowledgment

The "ENSURE" team

V. Russo

M. Zavelani-Rossi

ERC-2014-CoG No.647554 FNSURE

NanoLab

NanoLab Group

D. Dellasega

A. Maffini

L. Fedeli

Acknowledgment

The "ENSURE" team

V. Russo

M. Zavelani-Rossi

ERC-2014-CoG No.647554 FNSURE

NanoLab Group

D. Dellasega

A. Maffini

L. Fedeli

L. Cialfi

A. Formenti

F. Mirani

.... Thank you for your attention!

More info on our website

