

Plasmonics at relativistic laser intensities: particle acceleration and HHG

Luca Fedeli Szeged, 12/10/2017

The ENSURE group at Politecnico di Milano

Matteo Passoni

Associate professor

erc ERC-2014-CoG No.647554 ENSURE

Collaborations with:

The ENSURE group at Politecnico di Milano

Matteo Passoni

Associate professor

erc ERC-2014-CoG No.647554 ENSURE

We are interested in:

- Intense Laser-driven sources
- Material science applications of laser-driven sources

Collaborations with: • Advanced targetry

The ENSURE group at Politecnico di Milano

Matteo Passoni

Associate professor

ERC-2014-CoG No.647554 erc **ENSURE**

Our expertise:

- Materials science
- Theory & sim of intense laser-plasma interaction

OSAKA UNIVERSI

Queen's University

Collaborations with:

Plasmonics at relativistic laser intensities

Plasmonics at relativistic laser intensities

Mainly Ti:Sapphirebased systems

Relativistic regime: $a_0 > 1$

Nowadays these intensities can be obtained with table-top setups

Laser facilities can reach intensities of ~ 10²² W/cm²

Pulser PW laser (Gwangju, Rep.of Korea)

ELI-beamlines, Apollon... aim at > 10²³ W/cm²

These ultra-intese lasers are:

• Ultra-high contrast

At these intensities everything becomes a plasma in few cycles

Nuclear excitation Nuclear reaction

Plasmonics at relativistic laser intensities

Plasmonics at relativistic laser intensities

Plasmonics is a vibrant research field

Plasmonics is a vibrant research field

Can we port some of its ideas in the relativistic regime?

holes

p-type InAs

Plasmonics is a vibrant research field

Can we port some of its ideas in the relativistic regime?

Almost unexplored topic

What schemes from plasmonics might be suitable?

we don't have dielectrics at ultra-high intensity

We might use a grating target

Gratings allow to excite surface plasmons if resonance is satisfied

Gratings allow to excite surface plasmons if resonance is satisfied

How can we find if we are actually exciting surface plasmons?

We may have a look at several "observables"

- Resonant enhancement of laser-driven ions (Ceccotti et al. PRL 111 2013)
- Acceleration of electrons along target surface by surface plasmon (Fedeli et al. PRL 116 2016)
- Resonant enhancement of High-order Harmonic generation (Fedeli et al. App.Phys.Lett. 110 2017)

Irradiated solid foils emit multi-MeV ions

Irradiated solid foils emit multi-MeV ions

from Macchi et al. 2013. Rev.Mod.Phys.

Grating targets show resonant enhancement of ion acceleration

T.Ceccotti et al. PRL 111 (2013)

100 TW UHI laser CEA-Saclay, Paris

I ~ $5x10^{19}$ W/cm² 10¹² pulse contrast

Gratings d = 2λ , 250 nm height Expected resonance @ 30°

Grating targets show resonant enhancement of ion acceleration

100 TW UHI laser CEA-Saclay, Paris

I ~ 5x10¹⁹ W/cm² 10¹² pulse contrast

Gratings d = 2λ , 250 nm height Expected resonance @ 30°

Relativistic fields can accelerate electrons at multi-MeV energies


```
Can we use the fields of a Surface plasmon to accelerate e<sup>-</sup> ?
```


M.Raynaud et al. Physics of Plasmas 14 (2007)

C.Riconda et al. Physics of Plasmas 22 (2015)

We irradiate again gratings, but with diagnostics for e⁻

100 TW UHI laser CEA-Saclay, Paris

I ~ 5x10¹⁹ W/cm² 10¹² pulse contrast

Gratings d = 2λ , 250 nm height Expected resonance @ 30°

Lanex allows to image the emitted electrons

Lanex allows to image the emitted electrons

No particular features with flat targets

Collimated emission with gratings!

100s pC with energy up to 15 MeV

Resonant enhancement of electron emission

♦ G30 @ tg

Numerical simulations can help to visualize what's going on

Particle-in-cell codes in a nutshell

Particle-in-cell codes in a nutshell

Distribution function Sampled with "macroparticles"

Particle-in-cell codes in a nutshell

Current deposition & interpolation of EM field Use of shape functions to reduce noise

piccante Particle-In-Cell code

Piccante: https://github.com/ALaDyn/piccante

3D simulations allow to reproduce essential experimental features

3D simulation

Lanex from experiments

High-order Harmonics

Three "ingredients"

HHG with irradiated HHG with gratings Grating targets irradiated at solid targets resonance angle for surface plasmon excitation

We can generate harmonics with intense lasers

No a priori limits for the maximum intensity (relativistic oscillating mirror)

Teubner et al. 2009. RevModPhys,81 Vincenti et al. 2012. PRL, 108

Oversimplified model: Relativistic Oscillating Mirror

Oversimplified model: Relativistic Oscillating Mirror

Oversimplified model: Relativistic Oscillating Mirror

What if we irradiate a grating?

We should obviously expect diffraction of harmonics (well known)

$$\frac{n\lambda}{md} = \sin(\theta_i) + \sin(\theta_{mn})$$

X. Lavocat-Dubuis & J.P. Matte PoP 17 2010 M.Yeung et al. New Journal of Physics 15 2013

But what if we irradiate a grating at resonance?

2D numerical simulation campaign

Laser (~100s TW system): P-pol, $a_0 = 15$, 32 fs FWHM, 4 μ m waist

Target:

Either a flat target or a grating target with d=2.0 λ (resonance at 30°) and peakto-valley depth of 0.25 λ

Flat target @ 45° Grating target @ 35° 20 20 20 20 15 15 15 15 10 10 10 10 5 5 5 5 B_z [a₀ units] B_z [a₀ units] γ/λ ٨/λ 0 0 0 0 -5 -5 -5 -5 -10 -10 -10 -10 -15 -15 -15 -15 -20 -20 -20 -20 20 20 -5 0 5 10 15 -5 0 5 10 15 x/λ x/λ

Flat target @ 45° Grating target @ 35° 20 20 20 20 15 15 15 15 10 10 10 10 5 5 5 5 B_z [a₀ units] B_z [a₀ units] γ/λ ٨/λ 0 0 0 0 -5 -5 -5 -5 -10 -10 -10 -10 -15 -15 -15 -15 -20 -20 -20 -20 20 20 -5 0 5 10 15 -5 0 5 10 15 x/λ x/λ

Few snapshots of the EM fields

Few snapshots of the EM fields

Few snapshots of the EM fields Flat target @ 45° Grating target @ 35° 20 20 20 20 15 15 15 15 10 10 10 10 5 5 5 5 B_z [a₀ units] B_z [a₀ units] γ/λ ٨/λ 0 0 0 0 -5 -5 -5 -5 -10 -10 -10 -10 -15 -15 -15 -15 -20 -20 -20 -20 20 20 -5 0 5 10 15 -5 0 5 10 15 x/λ x/λ

Few snapshots of the EM fields

Few snapshots of the EM fields Flat target @ 45° Grating target @ 35° 20 20 20 20 15 15 15 15 10 10 10 10 5 5 5 5 B_z [a₀ units] B_z [a₀ units] ٨/٧ ٨/λ 0 0 0 0 -5 -5 -5 -5 -10 -10 -10 -10 -15 -15 -15 -15 -20 -20 -20 -20 20 20 -5 0 5 10 15 -5 0 5 10 15 x/λ x/λ

Flat target @ 45° Grating target @ 35° 20 20 20 20 15 15 15 15 10 10 10 10 5 5 5 5 B_z [a₀ units] B_z [a₀ units] γ/λ ٨/λ 0 0 0 0 -5 -5 -5 -5 -10 -10 -10 -10 -15 -15 -15 -15 -20 -20 -20 -20 20 20 -5 0 5 10 15 -5 0 5 10 15 x/λ x/λ

Fields are analyzed via Fourier Transform

We observe an enhancement of HHG near resonance

We observe an enhancement of HHG near resonance

F @45° G30 @15° G30 @30° G30 @35° G30 @45° 10 15 [arb.units] 10 - $\stackrel{\mathsf{A}}{\sim}$ 5 fft(B_z)² [0 10⁻⁵ 10⁻⁶ -5 0 15 0 15 15 0 10 10 0 10 10 15 15 5 5 5 5 10 0 5 k_x k_x k_x k_x k_x

FLAT TARGET

GRATING

We observe an enhancement of HHG near resonance

What would a real, finite-size detector see? Flat targe

What would a real, finite-size detector see? 10⁰ 10⁻² Intensity [I/I₀] 10^{-4} G30 35° Strong enhancement! 10⁻⁶ F 45° 10⁻⁸ 30 20 10 40 0 m XUV

POLITECNICO MILANO 1863

Conclusions

Grating targets as a possible path to observe plasmon-related effects at high field intensities

Resonant enhancement of laser-driven ion acceleration

Resonant enhancement electron emission from irradiated gratings

Resonant enhancement of HHG from irradiated gratings

Thank you for your attention

Some encouraging results from holes in the targets

Simple flat foil Grating at resonance At least the gratings work at ultrahigh intensities

Electron acceleration works also at higher intensities: successful preliminary tests at PW laser at GIST, Gwangju, South Korea

POLITECNICO MILANO 1863