

ENSURE & INTER ERC projects Matteo Passoni

Milano, March 15° 2017

The ENSURE project in a nutshell

Exploring the New Science and engineering unveiled by Ultraintense and ultrashort Radiation interaction with mattEr

Five year project: September 2015 – September 2020

Fields of interest:

Physics of laser-plasma interaction, material science, nuclear science & engineering, computational physics

Main goals:

Investigation and development of **novel ion acceleration** schemes using **superintense laser** pulses

Investigation of **applications** of **laser-driven ion beams** of scientific, technological and societal interest

The Laser:

A revolution in the generation of electromagnetic radiation

Superintense laser-matter interaction

New physics available by progress in laser technology

- CUOS: Center for Ultrafast Optical Science (University Michigan)
- (2) Apollon Laser, Centre Interdisciplinaire Lumière Extrême (France)
- (3) Extreme Light Infastructure (EU) https://eli-laser.eu/

erc

Important laser quantities

Typical laser parameters with Chirped Pulse Amplification (since '80s)

Laser wavelength (μ m): \approx 1 (Nd-Yag), 0.8 (Ti-Sa), \approx 10 (CO₂)

```
Energy (per pulse): 10<sup>-1</sup> - 10<sup>3</sup> J
```

Power: ≈ 100 TW - few PW (PW lines now available)

Pulse duration: $\approx 10 - 10^3$ fs (at $\lambda = 1 \ \mu$ m, $\tau = c/\lambda = 3.3$ fs)

Spot size at focus: down to diffraction limit \rightarrow typically ø < 10 μm

Intensity (power per unit area): 10¹⁸ W/cm² up to 10²² W/cm²

From huge facilities.....

Nova laser, LLNL, 1984

... to table-top systems!

Commercial TW class laser, 2010s

POLITECNICO MILANO 1863

The strength of laser fields:

Laser field vs. atomic fields

Calvert, J., Palmer, A., Litvinyuk, I., & Sang, R. (2016). Metastable noble gas atoms in strong-field ionization experiments. High Power Laser Science and Engineering

Ionization process **—** unbound mixture of electrons and ions

Plasma physics

99% of matter in the visible universe is in the state of plasma

Astrophysical plasmas

Magnetic fusion research

"Cold plasmas"

Laser-Plasma interction

The strength of laser fields:

Laser field vs. "relativistic" field

Reports on Progress in Physics 75(5), 056401 (2012)

The strength of laser fields:

Laser field vs. "Schwinger" field

Schwinger limit

[Vacuum break-down: J. Schwinger, *Phys. Rev.* **82**, 664 (1951)]

 $eE\lambda_{c} = 2m_{e}c^{2} \Longrightarrow$ $E \approx 2.7 \times 10^{16} \frac{\text{V}}{\text{cm}} \Rightarrow I \approx 10^{30} \frac{\text{W}}{\text{cm}^2}$

e⁺ e⁻ couples and Y photons extracted from the vacuum!

Ultimate intensity limit

Superintense laser-matter interaction

Laser-driven proton acceleration

Conventional ion accelerators:

High-energy particle beams crucial for:

- Medicine: radiotherapy, nuclear diagnostics,...
- Material engineering: ion beam analysis, implantation
- Nuclear engineering: Inertial Confinement Fusion,...
- Basic science: particle & high energy physics,...

CNAO Synchrotron (Pavia)

Laser-driven ion accelerator:

Appealing potential:

- Compactness
- Cost effectiveness
- Flexibility

Critical issues:

- Gain control of the process
- Increase efficiency/performance
- Limitation and cost of lasers

Novel targets can be the ENSURE!

Main goals of ENSURE:

Design and **production of innovative targets** for laser-driven ion acceleration

<u>Theoretical investigations</u> of novel laser-driven ion acceleration mechanisms and interaction of laser-generated ions with matter

New experimental campaigns of laser-driven ion acceleration

Applications of laser-driven ions for nuclear and materials engineering

Novel target is key

Conventional Target

Foam-attached Target

... but foam optimization required

Development of advanced targets

Pulsed Laser Deposition (PLD) of nanostructured targets

Carbon "foams"

NanoLab Support from NanoLab facilities and infrastructures:

Two ns-Pulsed laser deposition (PLD) systems Thermal treatment systems

SEM, STM, AFM microscopy Raman & Brillouin spectroscopy

New laboratories under development

Surface debris

Heat-affected zone

Microcracks

Today

erc

Tomorrow (within 2017)

New techniques to improve capability in advanced target production:

• femtosecond PLD

Recast layer

Shockwave

• HiPIMS

femtosecond PLD

Ep=5 mJ t=100 fs I=10¹⁵ W/cm²

POLITECNICO MILANO 1863

Γheoretical/numerical investigation

Particle-In-Cell simulations

• Simulation of relativistic laser interaction with nanostructured materials

High Performance computing

 2D and 3D simulations are performed on Marconi supercomputer (CINECA, Bologna)

Energy spectra of laser-accelerated protons for linear (P) and circular (C) polarization

Experiments on laser facilities

Setup of an ion acceleration experiment:

Ion acceleration experiments:

- Performed at GIST (Rep. of Korea) in 2015-2016
- to be performed at HZDR (Germany) in 2017
- to be performed at ILE (Osaka) in 2017

An example of application:

Material characterization & processing

- Ion beam analysis: RBS, NRA, PIXE,...
- Neutron imaging and radiography....

- Ion implantation
- Radiation damaging...

Laser-driven ion beam may ensure major advantages!

The INTER project in a nutshell

Innovative Neutron source for non destructive TEsting and tReatments

18 months project: Foreseen starting date May 2017

Fields of interest: Laser-matter interaction, material science, neutron imaging and diagnostics, physics for cultural heritage

Main goal:Development of a compact accelerator module for the
generation of an innovative portable laser-driven neutron source

Partners: Industrial partners strongly involved

The INTER concept:

Towards a portable neutron source

~ 50 cm

The INTER concept:

Towards a portable neutron source

~ 50 cm

E. H. Lehmann et al. NIMA A 542(1-3), 68-75(2005)

The ENSURE team:

Matteo Passoni Associate professor, Principal investigator

Margherita Zavelani Rossi Associate professor

Valeria Russo Researcher

David Dellasega Post-doc

Alessandro Maffini Post-doc

Luca Fedeli Post-doc

3 PhD students

Andrea

1 Master's student

Francesco

Thanks for your attention!

