

ERC-2014-Cog No. 647554 ENSURE

Foam-Based Multi-Layer Targets for Laser-Driven Ion Acceleration

Arianna Formenti

Isola d'Elba, September 27th, 2017

3rd European Advanced Accelerator Concepts Workshop

Plasmas as non-conventional accelerators

What kind of lasers?

Already available ultra-intense lasers

Ultra-intense lasers turn matter into plasma

Typical CPA laser pulse parameters

- Wavelength $\approx 1 10 \,\mu m$
- Energy $\approx 10^{-1} 10^3 \text{ J}$
- Power $\approx 100 \text{ TW}$ few PW
- Duration $\approx 10 10^3$ fs
- Spot size Ø < 10 μm
- Intensity ≈ 10¹⁸ 10²² W/cm²

full ionization!

From huge facilities...

...to table-top systems.

www.engineeringchallenges.org

www.engineeringchallenges.org

www.engineeringchallenges.org

LHC ring, Geneva, Switzerland

www.engineeringchallenges.org

LHC ring, Geneva, Switzerland

laser pulse

- ultra-high intensity
- ultra-short duration

Macchi et al. *Rev Mod Phys* 85.2 (2013): 751. Daido et al. *Rep Prog Phys* 75.5 (2012): 056401.

solid density

Macchi et al. *Rev Mod Phys* 85.2 (2013): 751. Daido et al. *Rep Prog Phys* 75.5 (2012): 056401.

POLITECNICO MILANO 1863

hot electron cloud

- thermal spectrum
- few MeV temperature

• solid density

Macchi et al. Rev Mod Phys 85.2 (2013): 751. Daido et al. Rep Prog Phys 75.5 (2012): 056401.

laser pulse

- ultra-high intensity
- ultra-short duration

target

- µm thickness
- solid density

accelerated ions

• mainly *p* and C⁶⁺ from impurities

hot electron cloud

• thermal spectrum

• few MeV temperature

- broad, exponential spectrum
- cutoff energy < 100 MeV
- collimation along target normal
- number 10⁹ 10¹³

Macchi et al. *Rev Mod Phys* 85.2 (2013): 751. Daido et al. *Rep Prog Phys* 75.5 (2012): 056401.

POLITECNICO MILANO 1863

The target is crucial

- solid density
- broad, exponential spectrum
- cutoff energy < 100 MeV
- collimation along target normal
- number 10⁹ 10¹³

Macchi et al. *Rev Mod Phys* 85.2 (2013): 751. Daido et al. *Rep Prog Phys* 75.5 (2012): 056401.

Our group @ Politecnico di Milano

POLITECNICO MILANO 1863

POLITECNICO

MILANO 1863

The ENSURE team

Associate Professors

Matteo Passoni

Margherita Zavelani Rossi

PhD students

Post-docs

David Dellasega

Alessandro Maffini

Luca Fedeli Lorenzo Cialfi

Andrea Pazzaglia

Arianna Formenti

Francesco Mirani

Michele Sala

MSc student

Alessandro Tentori

POLITECNICO MILANO 1863

POLITECNICO

MILANO 1863

The ENSURE team

Experimental team

Associate Professors

Matteo Passoni

Margherita Zavelani Rossi

Researcher

Valeria Russo

David Dellasega

Alessandro luca Maffini Fedeli

Post-docs

Lorenzo Cialfi

PhD students

Andrea Pazzaglia

Arianna Formenti

Francesco Mirani

Michele Sala

MSc student

Alessandro Tentori

POLITECNICO MILANO 1863

POLITECNICO

MILANO 1863

The **ENSURE** team

Numerical team

Associate Professors

Matteo Passoni

Margherita Zavelani Rossi

Researcher

Valeria Russo

Alessandro Luca

Maffini

Post-docs

Lorenzo Cialfi

PhD students

Andrea Pazzaglia

Arianna Formenti

Francesco Mirani

David

Dellasega

Michele Sala

MSc student

Fedeli

Alessandro Tentori

POLITECNICO MILANO 1863

18

ENSURE research interests

Laser-driven ion acceleration

- theoretical/numerical investigations
- experimental campaigns

Materials science

- development of low-density foams
- advanced targets for laser-plasma experiments

Applications in materials and nuclear science

- materials characterization with laser-driven ions
- secondary neutron sources for applications

Fundamental physics and laboratory astrophysics

- laser interaction with nanostructured plasmas
- collisionless shock acceleration of ions

A smart target improves the acceleration process

Target Normal Sheath Acceleration (TNSA)

A smart target improves the acceleration process

Target Normal Sheath Acceleration (TNSA)

A smart target improves the acceleration process

Target Normal Sheath Acceleration (TNSA)

P

POLITECNICO MILANO 1863

But not any target material is ok

Near-critical materials is what we need

underdense plasmas

- laser propagation
- low absorption
- volume interaction

Near-critical materials is what we need

underdense plasmas

- laser propagation
- low absorption
- volume interaction

overdense plasmas

- laser reflection
- laser damping

EAAC 2017, Isola d'Elba

surface interaction

Near-critical materials is what we need

underdense plasmas

- laser propagation
- low absorption
- volume interaction

near-critical plasmas

- plasma density **matching** laser frequency
- strong interaction

complex regime

overdense plasmas

- laser reflection
- laser damping

EAAC 2017, Isola d'Elba

surface interaction

NEAR-CRITICAL MATERIALS

Producing near-critical materials is challenging

POLITECNICO MILANO 1863

We focus of Carbon foams

few options other than pre-heating

POLITECNICO MILANO 1863

Foams improve ion acceleration performances

foam-based multi-layer target

WITH FOAM

- stronger laser energy absorption
- more hot electrons
- higher hot electrons temperature
- increased maximum ion energy
- more accelerated ions
- enhanced robustness

Foams are directly grown on the substrate

production by **Pulsed Laser Deposition (PLD)** technique

POLITECNICO MILANO 1863

Foams are non-ordinary materials

top view

SEM images

cross-section

POLITECNICO MILANO 1863

31

Foams are non-ordinary materials

top view

SEM images

cross-section

POLITECNICO MILANO 1863

32

EAAC 2017, Isola d'Elba

ManoLab

Foams are non-ordinary materials

top view

SEM images

building-blocks

POLITECNICO MILANO 1863

33

EAAC 2017, Isola d'Elba

NanoLab

Foam features can be tuned on different scales

POLITECNICO MILANO 1863

Foam features can be tuned on different scales

POLITECNICO MILANO 1863

Foam morphology depends on gas pressure

Zani et al. Carbon 56 (2013)

POLITECNICO MILANO 1863

36

Foam morphology depends on the gas type

Helium

Zani et al. Carbon 56 (2013)

POLITECNICO MILANO 1863

37

Aggregation models can mimic foam growth

Diffusion-Limited (DLA)

- Brownian motion of particles
- particle deposition in clusters by irreversible sticking

Diffusion-Limited Cluster-Cluster (DLCCA)

- Brownian motion of particles
- particle aggregation in clusters by irreversible sticking
- clusters deposition on substrate

Height 9.95

POLITECNICO MILANO 1863

Witten and Sander. Phys Rev Lett 47 (1981)

Real vs. synthetic foam growth

REAL

DLCCA MODEL

Real vs. synthetic foam growth

REAL

DLCCA MODEL

POLITECNICO MILANO 1863

40

Real vs. synthetic foam growth

REAL

DLCCA MODEL

POLITECNICO MILANO 1863

41

Choose a foam model to simulate the acceleration

Particle-In-Cell codes

for laser-plasma interaction

github.com/ALaDyn/piccante github.com/SmileiPIC/Smilei

42

But first we investigated the interaction only

near-critical plasmas

random spheres

no substrate, so no ion acceleration!

Compare simulations of homogeneous plasmas...

POLITECNICO MILANO 1863

EAAC 2017, Isola d'Elba

2D

...with simulations of random spheres plasmas

Fedeli et al. Eur Phys J D 71 (2017)

45

EAAC 2017, Isola d'Elba

2D

Main difference is energy repartition

Fedeli et al. Eur Phys J D 71 (2017)

46

Next: compare different kinds of nanostructures

EAAC 2017, Isola d'Elba

3D

Ion acceleration experiments in laser facilities

3 recent campaigns:

• GIST, Gwangju, South Korea, 2015-2016

- HDZR, Dresden, Germany, 2017
- ILE, Osaka, Japan, 2017

Gwangju Institute of Science and Technology

Foams wipe out polarization dependance

Gwangju Institute of Science and Technology

P-polarization S-polarization C-polarization solid line: foam-attached target dashed line: flat solid foil

Some parameters:

- substrate = Al 0.75 µm
- foam = C 8 μ m
- energy on target = 8 J
- angle of incidence = 30°
- duration = 25 fs

Passoni et al. Phys Rev Accel Beams 19 (2016)

POLITECNICO MILANO 1863

The thinner the foam the better?

maximum proton energy vs. foam thickness

Some parameters:

- substrate = Al 0.75 µm
- foam thickness = 8, 12, 18, 36 µm
- energy on target = 8 J
- angle of incidence = 30°
- duration = 25 fs
- intensity = 4.5 x 10²⁰ W/cm²

Remark: reducing foam thickness is not trivial!

Prencipe et al. Plasma Phys Contr F 58 (2016)

POLITECNICO MILANO 1863

50

So far the thinner the foam the better HZDR

preliminary

51

Some applications of laser-induced ions...

laser-induced collisionless shock

secondary neutron sources

POLITECNICO MILANO 1863

...and of foam-based multi-layer targets

laser-induced collisionless shock

secondary neutron sources

53

Conclusions

Near-critical nanostructured foams are complex materials useful to enhance laser-driven ion acceleration.

EAAC 2017, Isola d'Elba

Production of foam materials with novel properties: low thickness, down to 4 μ m

Simulations to investigate foam behavior in the interaction: uniform should be better for ion acceleration

Ion acceleration experiments with foam-attached targets: promising results, thinner foams are more efficient

POLITECNICO MILANO 1863

54

Thank you!

arianna.formenti@polimi.it www.ensure.polimi.it www.nanolab.polimi.it

