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Different models to simulate foam growth

1. Brownian motion of nanoparticles (15 nm) 
2. Sticking  Formation of clusters (10-1000 particles)
3. Cluster deposition on substrate

I. Prencipe, et al., Plasma Phys. Control. Fus. 58 (2016): 034019

• Produce C foams with tunable density (10-150 mg/cm3)
• Design foam-attached targets using (almost) any kind of substrate
• Measure ultra-low densities with a novel «x-ray» method
• Simulate the foam aggregation
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Near-critical regime

n ∼ nc Enhanced laser-plasma coupling
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≈ 6 mg/cm3

(@ g = 1, l=800 nm)

Ultra-low density material required

Foam concept!
(Up to 99.5 %  of void!) solid mm foil

Production of carbon foams

Toward ultra-low density

Higher gas pressure

Virtually any kind of substrate!!Plasma plume

l= 266, 532, 1064 nm

Laser fluence: 0.1 J/cm2 to 20 J/cm2
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Process Gas

Inert (He, Ar..)
Reactive (O2)

~ 10 mg/cm3 (<10 x air density)~ 150 mg/cm3

Not limited to C:
Plastics, metals, 
oxides…

~ 2000 mg/cm3

Functionally graded materials

Higher laser fluence Higher gas pressure

Composition
Can be controlled 
with reactive gases

Raman Spectroscopy SEM & HR-TEM

Foam characterization

Structural & morphological characterization:

Building blocks: 10 nm 
nanoparticles

sp2 network of topologically 
disordered domains (∼ 2 nm)

Foam growth dynamics

Pulsed Laser DepositionDensity measurement

Potentially from 
10 to 2000 mg/cm3 

in a few tens of mm!
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Novel «x-ray» method

I. Prencipe et al., Sci. Technol. Adv. Mater., 16, 025007 (2015)

Foam

+ (preliminary) IBA 
confirms X-rays results!

Modelling and/or 
MC simulations

SEM

Uniformity vs Thickness

Numerical simulation of foams Laser-driven ion acceleration
Foam attached targets tested @ different laser facilities:

UHI100 @ SLIC
2J, 25 fs, 1019 W/cm2

PULSER @ GIST
8J, 30 fs, 5x1020 W/cm2

DRACO @ HZDR
3J, 30 fs, 1021 W/cm2

See D. Dellasega talk on Friday! 

+ 20%-200% proton Emax

Foam optimization 
is required!!!

M. Passoni et al., Plasma Phys. Control. Fus. 56 (2014): 045001 M. Passoni, et al., Phys. Rev. Acc. Beams 19 (2016): 061301

Higher e- temperature: 
more hard x-rays?

Conclusion and perspectivesWe are able to: Our next steps :

• Gain more insight in the foam growth dynamics
• Produce and characterize foam-based FGMs
• Optimize foam parameters for laser-driven ion acceleration
• Address related targetry issues (e.g. robustness, prepulse effect)
• Explore new production techniques (fs-PLD, HiPIMS,..)
• Explore different foam composition (CH, high Z metals,..)

Input for PIC simulation!
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Motivation & aims

Zani, A., et al. Carbon 56 (2013) 358-365.
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Related targetry issues:
(e.g. foam robustness) 

e.g. diffusion-limited cluster aggregation

See L. Fedeli talk on Friday! 
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