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Ultra-intense, ultra-high contrast fs lasers allow an 
irradiated nanostructured solid to retain its structure long 

enough to influence the interaction with the pulse 

Numerical simulations of nanostructured plasmas: 
enhanced laser-driven harmonic sources and near-critical 

plasmas
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Outline
Two different topics which involve “nanostructured” 

plasmas

Resonant enhancement of HHG with irradiated 
grating targets 

Laser interaction with nanostructured near-critical 
plasmas
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Resonant enhancement of HHG with grating targets 

L.Fedeli, A.Sgattoni, G.Cantono & A.Macchi
Appl. Phys. Lett. 110, 051103 (2017)
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Grating targets irradiated at surface plasmon resonance 
angle provide Enhanced HHG with respect to simple flat targets
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Three ingredients

HHG with irradiated
solid targets

HHG with gratings

Grating targets irradiated
At resonance angle for surface plasmon excitation
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HHG with ultra-intense laser-solid interaction?

HHG with irradiated
solid targets

HHG with gratings

Grating targets irradiated
At resonance angle for surface plasmon excitation
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Framework:
 HHG with ultra-intense laser-solid interaction

No a priori limits for 
the maximum
intensity (relativistic
oscillating mirror)

Teubner et al. 2009. RevModPhys,81
Vincenti et al. 2012. PRL, 108 
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HHG with irradiated
solid targets

HHG with gratings

Grating targets irradiated
At resonance angle for surface plasmon excitation

And why should I use a grating as a target?
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And why should I use a grating as a target?

If we use a grating 
We can separate the
Harmonics →
 quasi-monochromatic
source
nλ
md

=sin (θi)+sin(θmn)

X. Lavocat-Dubuis & J.P. Matte PoP 17 2010
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HHG with irradiated
solid targets

HHG with gratings

Grating targets irradiated
At resonance angle for surface plasmon excitation

And why should I use a gradient as a target?
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With a grating we can satisfy a condition for surface 
wave coupling 
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Resonant enhancement of laser-driven ion 
acceleration

Ceccotti et al. PRL 111 (2013)

Ion 
acceleration
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Emission of collimated electron bunches along the 
target surface

Fedeli et al. PRL 2016
Sgattoni et al. PPCF 2016

Ion 
acceleration
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Emission of collimated electron bunches along the 
target surface

Fedeli et al. PRL 2016
Sgattoni et al. PPCF 2016

Ion 
acceleration
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Emission of collimated electron bunches along the 
target surface

Fedeli et al. PRL 2016
Sgattoni et al. PPCF 2016

Riconda et al. PoP 2015

Ion 
acceleration
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We combine these three ingredients

HHG with irradiated
solid targets

HHG with gratings

Grating targets irradiated
At resonance angle for surface plasmon excitation
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2D numerical simulation campaign
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2D numerical simulation campaign

Laser (~100s TW 
system):
P-pol, a

0
 = 15, 

32 fs FWHM, 4 μm waist 

Target:
Either a flat target or a 
grating target with d=2.0λ 
(resonance at 30°) and 
peak-to-valley depth of 
0.25λ
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Few snapshots of the EM fields

Flat target @ 
45°

Grating target @ 
35°
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Few snapshots of the EM fields
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Few snapshots of the EM fields

Flat target @ 
45°

Grating target @ 
35°



28

Few snapshots of the EM fields

Flat target @ 
45°

Grating target @ 
35°



29
Fo

u
ri

e
r 

Tr
a

n
sf

o
rm

 

Fourier transform of B
z



30

GRATIN
G

Enhancement of HHG near-resonance

FLAT 
TARGET
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Enhancement of HHG near-resonance

GRATIN
G

FLAT 
TARGET
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Enhancement of HHG near-resonance

GRATIN
G

FLAT 
TARGET
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Field enhancement at the target surface
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What would a real, finite-size detector would see?
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What would a real, finite-size detector would see?

45° ± 2.5° 80° ± 2.5°

Flat target @ 
45°

Grating target @ 
35°
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What would a real, finite-size detector would see?
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Take home message

Numerical simulations suggest that irradiating a grating target at the 
resonance angle for surface plasmon excitation should lead to the 
generation of higher-order harmonics with respect to simple flat 
targets
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Nanostructured near-critical plasmas
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Laser interaction with near-critical plasmas is 
interesting for several applications...

Why bother with near-critical 
plasmas?

Several interesting applications:

● Enhanced ion acceleration
● Laboratory astrophysics
● γ-ray sources
● Inertial confinement fusion
● Electron acceleration

...
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...but they are challenging from a “targetry” point 
of view!

n
e
/n

c

0.1 1 10 100

High density gas-jets Solids
Cryogenic 
hydrogen

How do we fill the gap?
● Pre-heating
● Very low-density 

nanostructured 
materials

(λ~800nm)

● Aerogels
● Nanotube arrays
● Foams



42

Foam has a porous, complex nanostructure

A. MaffiniD. Dellasega
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We have several ongoing experimental activities 
involving foam-attached targets 

May 2017: ion acceleration & physics of 
irradiated near-critical plasmas

ERC-PoC: INTER

2017/2018: collision-less shocks & ps laser 
interaction with nanostructured foams 

2017/2018 : pulsed neutron generation

2017/2018 : compact ion and neutron 
sources for materials characterization

2014/2015: enhanced TNSA
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Idealized modeling

Laser propagation in uniform and 
nanostructured near-critical plasmas
L.Fedeli, A.Formenti, C.E.Bottani & M.Passoni EPJD 
Topical Issue on “Relativistic Laser Plasma 
Interactions” (accepted) 2017
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We studied three very idealized plasma models

uniform plasmas nanostructured plasmas“mixed” plasmas

2D numerical 
simulation
campaign

L.Fedeli, A.Formenti, C.E.Bottani & M.Passoni 
EPJD Topical Issue on “Relativistic Laser Plasma 
Interactions” (accepted) 2017
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In a wide range of laser intensities and average 
densities

n=
ne/nc

√1+a0
2/2

Uniform plasma
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In a wide range of laser intensities and average 
densities

n=
ne/nc

√1+a0
2/2

Nanostructured plasma
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Main differences appear for partitioning of 
absorbed energy...
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Main differences appear for partitioning of 
absorbed energy...
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...and for the tail of electron energy spectra

For electron energy spectra we restrict ourselves 
to this diagonal (highest transparency)
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...and for the tail of electron energy spectra
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A very similar approach was followed to 
simulated electron heating in near-critical foam-

attached targets

L.Cialfi, L.Fedeli & M.Passoni Phys.Rev.E 94 (2016)
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Setup of the physical scenario

Laser: p-polarized, a
0
 = 1-15, 

30° incidence, 

 

Unif. foam target
80 n

c
, 0.5 μm + 

1 n
c
, 10 μm

Nanost. foam target
80 n

c
, 0.5 μm + 

balls r=10 nm, n
e
=100 n

c 

avg.1 n
c
, 10 μm

Simple flat target
80 n

c
, 0.5 μm

2D PIC 
simulations
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Setup of the physical scenario
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Results: T
unif

 > T
nano

 > T
flat

x/λ

For foam-attached targets we exclude the 
escaping fast-electron population
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Benchmark with experimental results

I.Prencipe et al. PPCF 58 (2016) 
M.Passoni et al. PRAB 19 (2016) 

Benchmark with exp.

+

TNSA ion 
acceleration model*

*quasi-static 
Passoni-Lontano model

Phys. Rev. Lett. 101 (2008)

e- temperature 
from PIC sim.
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What’s next on this topic?
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Synthetic diagnostics for realistic configurations

I.Prencipe et al. PPCF 58 (2016) 
M.Passoni et al. PRAB 19 (2016) 
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Synthetic diagnostics for realistic configurations

Flat 
target

Uniform 
foam

DLA 
foam Reflected ligth&

Synthetic RCF
(realistic models)



60

THz emission from the back side?

Ding et al. Appl. Phys. Lett. 103 (2013)



Conclusions



Conclusions
Irradiating a grating at the resonance angle for surface 
plasmon excitation should lead to the generation of 
higher-order harmonics with respect to simple flat 
targets

Nanostructured near-critical plasmas 
Structure should be taken into account. Simulations 
suggest that experimental observables can be affected 
by the structure.



Thank you for your attention
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