

Near critical density, foam-based, multi-layered targets for laser-driven ion acceleration

David Dellasega Salamanca, 23/06/2017

The ENSURE group at Politecnico di Milano

The ENSURE project

Laser-driven ion acceleration

Theoretical/numerical & experimental investigation

Materials science

Development of low-density foams & advanced targets for laser-plasma experiments

Applications in materials and nuclear science

Materials characterization (e.g. PIXE) with laser-driven ions Secondary neutron sources for radiography and detection[...]

Fundamental physics and laboratory astrophysics

Laser interaction with (near-critical) nanostructured plasmas Collisionless shock acceleration of ions

The ENSURE group at Politecnico di Milano

Matteo Passoni Associate professor ERC-2014-CoG No.647554 erc _{ENSURE}

Margherita Zavelani-Rossi Associate professor

Valeria Russo Researcher

4 Post-docs

D. Dellasega

A. Maffini

L. Fedeli

L. Cialfi

2 PhD students

M. Sala

3 Master's students

People involved in experimental activities

Matteo Passoni Associate professor ERC-2014-CoG No.647554 **erc**_{ENSURE}

Margherita Zavelani-Rossi Associate professor

Valeria Russo Researcher

4 Post-docs

D. Dellasega

A. Maffini

L. Cialfi

2 PhD students

A. Tentori

F. Mirani

M. Sala

3 Master's students

Enhanced Target Normal Sheath Acceleration

Solid Foil Surface interaction mechanisms

> Target Normal Sheath Acceleration (TNSA)

Solid Foil + Low Density Layer Volume & Surface Interaction Mechanisms

- Higher laser energy absorption
- Enhanced fast electron production
- Enhanced number and maximum energy
- of accelerated ions
- T. Nakamura et al., Phys. Plasmas, 17 113107 (2010)
- A. Sgattoni et al., Phys. Rev. E, 85 036405 (2012)

Foam-attached targets for Enhanced-TNSA

optimal areal density range for given laser parameters

no toam .**=8**μm

20

30

...from near critical plasma to low density materials

ns Pulsed Laser Deposition (PLD) in a background gas

PLD Target e.g. pyrolytic graphite Background gas (film structure) Ar-He, pressure up to 1000 Pa

Substrate Thickness down to 10s nm Diameter up to 5 cm Rotation few rpm (film thickness profile)

Target-substrate distance (film structure)

45-85 mm

Process duration (film thickness) 5 – 60 min

A. Bailini et al., Appl. Surf. Sci., 253 8130 (2007); A. Zani et al., Carbon, 56 358 (2013)

ns Pulsed Laser Deposition (PLD) in a background gas

Nanoparticle formation by ns PLD in background gas

- 1. Adiabatic expansion
- 2. Shock wave formation
- 3. Nanoparticle synthesis
- 4. Nanostructured film formation

Not possible use a unique model for describing the whole process

Investigating the role of

- Pulse energy
- Ar pressure
- Target-substrate distance

To control

- energy of the species,
- deposition rate,
- coupling with expanding plasma
- expansion dynamics,
- diam. of nanoparticles,
- porosity of the film

Role of process parameters - pressure

Relatively easy to produce Carbon nanoparticles

Foam: PLD parameters

- E=100 mJ
- P=100 Pa Ar
- d_{ts}=8.5 cm
- thickness = 12 µm

Not so easy to control the growth of the whole film!

It is difficult to obtain thin and homogeneous/reliable coatings!

Acceleration experiment @ UHI100 LIDyL

M. Passoni et al., Plasma Phys. Control. Fusion, 56 045001 (2014)

Foam: PLD parameters

- E=100 mJ
- P=100 Pa Ar
- d_{ts}=8.5 cm
- thickness = 12 µm
- Substrate = AI 1.5 μm

Ion acceleration: laser parameters

- Energy on target = 1 J
- Intensity = 1.7 10¹⁶ 3.3 10¹⁹ W/cm²
- Angle of incidence = 10°

I<10¹⁸ W/cm²

Partial foam ionization (C²⁺/C⁴⁺): under-critical plasma

- Enhanced proton acceleration regime
- Foams are too thick

POLITECNICO MILANO 1863

in collaboration with: P. Martin, T. Ceccotti et al.

Improving uniformity at lower thickness

Foam: PLD parameters

- E=100 mJ
- P=100 Pa Ar
- d_{ts}=8.5 cm
- thickness = 8 µm

Foam: PLD parameters

- E=130 mJ
- P=500 Pa Ar
- d_{ts}=4.5 cm
- thickness = 8 µm

Improved reproducibility + lower thickness available

Acceleration experiment @ Pulser GIST

I. Prencipe *et al.*, Plasma Phys. Control. Fusion, 58 034019 (2016) M. Passoni *et al.*, Phys. Rev. Acc. Beams, 19 061301 (2016)

Foam: PLD parameters

- E=130 mJ
- P=500 Pa Ar
- d_{ts}=4.5 cm
- thickness = 8, 12, 18, 36 µm
- Substrate = AI 0.75 µm

Ion acceleration: laser parameters

- Energy on target = 8 J
- Intensity = $0.5 \ 10^{20} 5 \ 10^{20} \ W/cm^2$
- Angle of incidence = 30°

Higher ion energies using thinner foams

Acceleration experiment @ Pulser GIST

in collaboration with: I. W. Choi, C. H. Nam et al.

Insensible respect to polarization (volume interaction)

Further improvement: foam thickness below 5 µm

Foam: PLD parameters

- E=130 mJ
- P=500 Pa Ar
- d_{ts}=4.5 cm
- thickness = 4 μ m

Foam: PLD parameters

- E=200 mJ
- P=1000 Pa Ar
- d_{ts}=4.5 cm
- thickness = 4 µm

Increasing the energy of the impinging nanoparticles

Target development for experiments @ DRACO

Thin foam issues

in collaboration with: I. Prencipe, T. Cowan, U. Schram et al.

Usual target holder 120 available shots

Damage in neighbouring targets

Careful engineering of target holder

- Ceramic
- 23 available shots x holder
- Rectangular holes

Caustics formation due to the shape of the hole

Acceleration experiments @ DRACO 150 TW (preliminary data)

Foam: PLD parameters

- E=200 mJ
- P=1000 Pa Ar
- d_{ts}=4.5 cm
- thickness = 4, 8, 12 μm
- Substrate = AI 1.5 µm

Ion acceleration: laser parameters

- Energy on target = 2 J
- Intensity = $5 \ 10^{20} \ W/cm^2$
- Angle of incidence = 2°

New multilayer target development

Double side deposition on a ultra-thin C layer (100 nm) Interest: laser induced electrostatic shock generation

For further improvement: foam growth modelling

Diffusion limited cluster-cluster aggregation model Nanoparticles aggregate before reaching the surface

For further improvement: foam growth modelling

Diffusion limited cluster-cluster aggregation model Nanoparticles aggregate before reaching the surface

Density gradients

~10 mg/cm³

~150 mg/cm³

Foam: PLD parameters

- E=150 mJ
- P= from 100 Pa to 700 Pa Ar
- $d_{ts} = 4.5 \text{ cm}$

Gold foams

Foam: PLD parameters

- E=100 mJ
- P=1000 Pa Ar
- d_{ts}= 5 cm

Conclusion

- Production of multilayers targets composed of near critical carbon foam 4 um thick
- Promising results in laser ion acceleration experiments

Near future developments

- **Foam brittleness**: further improve the target holder to allow a higher density of shots using thin foam
- Production of targets with density gradients & different composition (e.g. C-H or C-D; high Z materials)
- Multi-layered targets exploiting capabilities also of fs-pulsed laser deposition (foam) and High Power Impulse Magnetron Sputtering (substrate)
- Theoretical and numerical modelling of foam formation and growth, to be used also for reliable PIC numerical analysis of the laser-foam interaction physics (see L. Fedeli next talk)
- Production of prototype foam-based target systems to be used in compact interaction chambers
- On site production of foam targets with a suitable PLD laser?

Thank you for your attention!

More info on our website

How to measure film density?

Quartz microbalance

does not work!

loss of stiffness of the film

Scanning Electron Microscopy (SEM) + Energy Dispersive X-Ray Spectroscopy (EDS)

$$\frac{I_{film}}{I_{ref,film}} = f(\rho, z)$$

areal density calculation

density measurement of nanostructured films

I. Prencipe et al., Sci. Technol. Adv. Mater., 16, 025007 (2015)

Towards high Z materials – gold foams

Gold foam

- E=100 mJ
- P=1000 Pa Ar
- $d_{ts} = 5 \text{ cm}$

Acceleration experiment @ GIST

Acceleration experiment @ UHI100 LIDyL

M. Passoni et al., Plasma Phys. Control. Fusion, 56 045001 (2014)

in collaboration with: P. Martin, T. Ceccotti et al.

two interaction regimes

I<10¹⁸ W/cm²

Partial foam ionization (C²⁺/C⁴⁺): under-critical plasma

Enhanced proton acceleration regime

I~10¹⁸ -10¹⁹ W/cm²

Complete foam ionization (C⁶⁺): over-critical plasma

Ordinary proton acceleration regime

$$n_e(\rho, Z) = \rho \cdot \frac{Z}{A} \cdot N_A$$
$$n_c(\lambda) = \frac{\epsilon_0 \cdot m_e}{e^2} \cdot \frac{4\pi^2 c^2}{\lambda^2}$$
$$\frac{n_e(\rho, Z)}{n_c(\lambda)}$$

Nanoparticle formation by ns PLD in background gas

F. Neri , et al. Radiation Effects and Defects in Solids, 165:6-10, 559-565 (2010)

- 1. Adiabatic expansion
- 2. Shock wave formation
- 3. Nanoparticle synthesis
- 4. Nanostructured film formation

Many models are used to describe plume dynamics (drag model, shockwave model, diffusion model)

It is not possible to use a unique model for describing the whole process

Diffusion limited cluster-cluster aggregation model for foam deposition

Diffusion limited cluster-cluster aggregation model for foam deposition

