Investigation of near-critical foam targets for laser-driven ion acceleration

Irene Prencipe 6th Target Fabrication Workshop Greenwich, May 2017

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

HZDR

Acknowledgments

Nanolab @ Politecnico di Milano

- Advanced targets for laser driven ion sources
- Target fab, PIC, experiments
- Beamline application: material science

ERC-2014-CoG No. 647554

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Laser-particle acceleration group

- DRACO 150 TW/1 PW (Ti:Sapphire, 30 fs)
- Beamline application: cancer therapy (soon in vivo)

Hibef

HZDR High Energy Density group

- HI/HE lasers @ European XFEL
- fs probing of laser-driven plasmas on the few nm scale by Small Angle X-Ray Scattering

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF Access to the characterization capabilities of the Institute of Ion Beam Physics and Material Research

Target Normal Sheath Acceleration (TNSA)

A. Macchi et al., Rev. Mod. Phys., 85 751 (2013)

Enhanced laser absorption in near-critical layer

ns Pulsed Laser Deposition (PLD) in background gas

Nd:Yag laser 532 nm, 0.8 J cm⁻², 7 ns, 10 Hz

PLD Target Pyrolitic graphite

> Target-substrate distance (film structure) 45-85 mm

Process duration (film thickness) $5 - 60 \min$

Background gas

Ar-He, pressure up to 1000 Pa

Substrate

profile)

Thickness down to 10s nm

Rotation few rpm (film thickness

Diameter up to 5 cm

(film structure)

A. Bailini et al., Appl. Surf. Sci., 253 8130 (2007); A. Zani et al., Carbon, 56 358 (2013)

Mitglied der Helmholtz-Gemeinschaf

Target production

A. Bailini et al., Appl. Surf. Sci., 253 8130 (2007); A. Zani et al., Carbon, 56 358 (2013)

ns Pulsed Laser Deposition (PLD) in background gas

Density gradient

Obtained by linear increase of background pressure (100 Pa to 700 Pa)

~10 mg/cm³

~150 mg/cm³

Ar, $\lambda = 532$ nm, E = 150 mJ, Substrate-Target distance = 4.5 cm

Target production

Diffusion limited cluster-cluster aggregation model for foam deposition

Irene Prencipe • i.prencipe@hzdr.de • www.hzdr.de • HZDR

Mitglied der Helmholtz-Gemeinschaft

Target production

Diffusion limited cluster-cluster aggregation model for foam deposition

Morphology and nanostructure

Target characterization

Thickness

Cross Section Scanning Electron Microscopy

Film thickness ~ 4 μ m – 80 μ m

Density and composition

Quarz Crystal Microbalance vs Energy Dispersive X-Ray Spectroscopy

Ion Beam Analysis (NRA and ERDA) @ IBC-HZDR

Density benchmark ρ_{IBA} ~13 mgcm⁻³ vs ρ_{EDS} ~12 mgcm⁻³ Composition C ~ 92 at.% H ~ 6.3 +/- 2 at.% N < 0.4 (~0.2) at.% O ~ 1.3 at.%

I. Prencipe et al., Sci. Tech. Adv. Mat., 16 (2015)

Target development

Damage in neighbouring targets @ DRACO 150 TW

Target development

3 Experimental campaigns

Ti:Sapphire lasers, ~30 fs, λ =800 nm, I ~ 10¹⁶-4.5 10²⁰ W/cm²

Results

Enhanced TNSA (cut-off energy, ion number)

- FOR optimal foam properties
- Reduced dependence on substrate thickness

Ion acceleration experiments

Results

Effect of foam nanostructure

Reduced dependence on polarization

- Target production
 - C foam coating by ns Pulsed Laser Deposition
 - 4-80 μm, down to 7 mg/cm3
- Target characterization
 - SEM, EDS, QCM, STEM, Raman @ Politecnico di Milano
 - He microscopy, ERDA, NRA @ HZDR
- Study of target damage @ DRACO, HZDR
- Experimental results
 - TNSA enhancement and foam optimization
 - Role of nanostructure (3D PIC simulations)

M. Passoni, A. Pazzaglia, D. Dellasega, A. Maffini, V. Russo, L. Fedeli...

ERC-2014-CoG No. 647554

U. Schramm, J. Metzkes, K. Zeil, S. Kraft, L. Obst, M. Rehwaldt, M. Sobiella... HZDR

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF T. Cowan, A. Laso Garcia, T. Kluge, M. Molodtsova, A. Ferrari...

ROSSENDORF

J. Von Borany, J. Grenzer, G. Hlawacek, J. Julin, R. Heller

Thank you for your attention

HED Instrument at European XFEL

Rey leatures	Key	/ features	3
--------------	-----	------------	---

Bandwidth ΔE/E	10 ⁻³ (natural FEL source) and 10 ⁻⁴ (standard monochromator, seeding); 10 ⁻⁶ * (high-resolution monochromator)
Photon energy range	3–5 keV**, 5–20 keV, 20–25 keV**
Polarization	Linear (horizontal) Circular (future option)
Pulse duration	2–100 fs FWHM
Beam size	Sub-μm to > 100 μm (provided by various compound refractive lens stages) >mm unfocused
Special optics	Split and delay line (<u>BMBF contribution)</u> High-resolution monochromator
Optical lasers	High-energy (100 J-class) long pulse (>ns) laser (<u>HIBEF contribution)</u> High-intensity (100 TW-class) short pulse (~30 fs) laser (<u>HIBEF contribution)</u> Pump–probe (mJ to 100 mJ class) short pulse (~15 fs – 1 ps) laser

-6

*10 bandwidth only for a few selected photon energies

**Limited in terms of focusing capability, available photon number of sample, quantum efficiency of detectors

Areal density evaluation

Energy Dispersive X-Ray Spectroscopy (EDS)

