ADVANCES IN PRODUCTION AND CHARACTERIZATION OF NEAR CRITICAL CARBON FOAM TARGETS

Andrea Pazzaglia¹, David Dellasega¹, Alessandro Maffini¹, Valeria Russo¹, Irene Prencipe², Matteo Passoni¹

¹Dipartimento di Energia, Politecnico di Milano, Milan, Italy ²Institute of Radiation Physics, Helmholtz–Zentrum Dresden–Rossendorf, Dresden, Germany

INTRODUCTION

- Advances in *production, characterization and simulation* of of ultra-low density carbon \rightarrow CARBON FOAM
- @ Micro and Nano-structured Materials Laboratory (Nanolab) (Politecnico di Milano)

CRITICAL DENSITY $m_e \omega$

Electromagnetica wave **propagation**

Wave **damping**, high reflection

High laser-plasma coupling

Deposition of different morphologies:

Low density Carbon foam

Buffer Gas: Ar λ = 532 nm E = 130 mJP = 500 Pa Gas flow = 1.4 sccm Substrate-Target distance = 4.5 cm

~ 150 mg/cm³ (1/10 bulk density)

Density measurement

Thickness $\rho = \tau t$ with SEM

Areal Density with <u>new technique</u> based on <u>Energy Dispersive X-ray</u> <u>Spectroscopy (EDS)</u>

Raman Spectroscopy

SEM & HR-TEM

Semiempirical model \rightarrow Density-pressure measures

- He QCM - He EDS ----- Ar QCM

- Ar EDS

Prencipe, Irene, et al. "Energy dispersive x-ray spectroscopy for nanostructured thin film density evaluation." Science and Technology of Advanced Materials 16.2 (2015): 025007.

300

400

FOAM BASED TARGET

The C foam che be **deposited on every kind of substrate**

- **Intermediate density Carbon trees**
 - Buffer Gas: Ar λ = 532 nm E = 130 mJP = 50 Pa Gas flow = 80 sccm Substrate-Target distance = 4.5 cm

Functionally graded Carbon coating

Buffer Gas: Ar $\lambda = 532 \text{ nm}$ E = 150 mJP = 100->700 Pa (linear) Gas flow = 0 sccm Substrate-Target distance = 4.5 cm

Zani, A., et al. "Ultra-low density carbon foams produced by pulsed laser deposition." Carbon 56 (2013): 358-365.

FOAM SIMULATION

- **Diffusion Limited Cluster-Cluster Aggregation (DLCA)**
- Brownian motion of nanoparticles (15 nm diameters) in the plasma plume
- Irreversible sticking of nanoparticles
- Formation of clusters (from tens to thousands of particles)

The foam suffer from laser damaging \rightarrow <u>designed foam based target</u>

LASER-DRIVEN ION ACCELERATION RESULTS

Ion acceleration experiments:

- Performed at **SLIC** (France) in 2014
- Performed at **GIST** (Rep. of Korea) in 2015-2016

CONCLUSION AND FUTURE PERSPECTIVE

We are able to:

- Produce C coating with tunable ultra-low density (10-150 mg/cm³) on every kind of substrate
- Produce **functionally graded coatings**
- Simulate the material at the mesoscale (>10 nm)
- **Measure the mean density** with novel method based on EDS
- Design the foam based target for laser-driven **<u>enhaced ion acceleration</u>**

Performed at HZDR (Germany) in 2017

Prencipe, I., et al. "Development of foam-based layered targets for laser-driven ion beam production." Plasma Physics and Controlled Fusion 58.3 (2016): 034019.

Passoni, M., et al. "Toward high-energy laser-driven ion beams: Nanostructured double-layer targets." Physical Review Accelerators and Beams 19.6 (2016): 061301

In the future we will be able to:

- Produce C coatings with **femtoseconds laser PLD** and **High Power Impulse Magnetron Sputtering**
- **Increse the control** on the C foam parameters (*lower density, designed*) gradients)
- Use laser-driven ion for **applied science** (*ion beam analysis, neutron*) imaging, ion implantation, radiation damaging)

