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Abstract

The in plane coefficient of thermal expansion (CTE) and the residual stress

of nanostructured W based coatings are extensively investigated. The CTE

and the residual stresses are derived by means of an optimized ad-hoc devel-

oped experimental setup based on the detection of the substrate curvature by

a laser system. The nanostructured coatings are deposited by Pulsed Laser

Deposition. Thanks to its versatility, nanocrystalline W metallic coatings,

ultra-nano-crystalline pure W and W-Tantalum coatings and amorphous-like

W coatings are obtained. The correlation between the nanostructure, the

residual stress and the CTE of the coatings are thus elucidated. We find that

all the samples show a compressive state of stress that decreases as the struc-

ture goes from columnar nanocrystalline to amorphous-like. The CTE of all

the coatings is higher than the one of the corresponding bulk W form. In

particular, as the grain size shrinks, the CTE increases from 5.1 10−6 K−1 for

nanocrystalline W to 6.6 10−6 K−1 in the ultra-nano-crystalline region. When

dealing with amorphous W, the further increase of the CTE is attributed to

a higher porosity degree of the samples. The CTE trend is also investigated

as function of materials stiffness. In this case, as W coatings become softer,

the easier they thermally expand.

Tungsten coatings, coefficient of thermal expansion, substrate curvature, Pulsed

Laser Deposition, residual stresses, nanostructure
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1 INTRODUCTION

It is well known that coatings are subjected to residual stresses, already present at

the end of the deposition process. These stresses have two main origins. Intrinsic

stresses, which are due to the deposition process itself, depending on the deposi-

tion conditions and by the mismatch of the properties between the coating and the

substrate materials (e.g. lattice parameter) [1]. Thermal stresses, due to a ther-

mal expansion mismatch between the coating and the substrate, they depend on

the elastic properties of the deposited and the base material, usually rising when

the sample is cooled down to room temperature after deposition. When the coated

components operate at variable temperatures, additional thermal stresses gener-

ate. These stresses, typically intensifying at the film-substrate interface, can lead to

coating failure, by either cracking or delamination. Predicting and monitoring these

stresses is crucial to guarantee the operational integrity of the coated devices. This

requires the knowledge of the elastic moduli and the CTE of the materials. In the

case of coatings this cannot be taken for granted. Firstly, because the thermome-

chanical properties, which depend on the specific film structure and morphology, can

be significantly different from the ones of the corresponding bulk form, and depend

on the deposition process. Secondly, because, for coatings, direct measurement can

be a challenging task.

A wide range of techniques is available to investigate the elastic properties of coat-

ings; namely, nanoindentation [2, 3] and various acoustic based techniques [4], in-

cluding Brillouin spectroscopy [5, 6, 7, 8], while little is known about the CTE of

films. The standard techniques adopted to measure the CTE of bulk materials (e.g.

dilatometry [9, 10]) are usually not viable for coatings. Several unconventional tech-

niques have been proposed, such as X-ray diffraction [11, 12, 13], ellipsometry [14]

and different optical based techniques [15]. Among them, the optical implementa-

tion of the substrate curvature (SC) technique has shown to be one of the most

promising methods [13, 16, 17, 18, 19, 20]. This method exploits laser beams to
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detect changes in the curvature radius of the coating-substrate system upon tem-

perature variations [21]. The CTE of the coating can be then deduced if the CTE

of the substrate and the elastic properties of both the film and the substrate are

known (see section 2).

In this work, we investigate the CTE and the residual stresses of tungsten (W)

coatings deposited by Pulsed Laser Deposition (PLD). W coatings are of particu-

lar interest in a wide range of technological applications, such as in microelectronic

and optoelectronic devices, as absorption layers in X-ray lithography [22, 23, 24],

and in nuclear fusion energy [25, 26, 27]. Thanks to the high versatility of PLD

in tuning many process parameters (e.g. background gas pressure during deposi-

tion, laser fluence on target), both mono-elemental and multi-elemental coatings

can be grown with tailored nanostructure, from amorphous to nanocrystalline, and

morphology, from porous to compact [5, 28, 29, 30]. Here, we focus on W-based

coatings with three different nanostructures, namely (i) nanocrystalline W (n-W),

(ii) ultra-nano-crystalline W (u-n-W) and (iii) amorphous-like W (a-W), with the

aim of highlighting the correlation between the thermal expansion behavior, the

residual stresses and the structural properties of the materials.

For the coating characterization, we develop an optimized SC setup that allows the

CTE determination over a wide range of temperatures (25 - 1000 ◦C). An ad-hoc de-

signed vacuum chamber is equipped with an optical system that drives a 2D pattern

of parallel laser beams on the surface of the coated substrate, and detects the re-

flected beams by a CMOS sensor. The beam positions, when the sample is thermally

bent, allow the direct determination of the substrate-coating curvature as function

of temperature. From curvature measurements, the residual stresses and the CTE

of the coatings are derived, under the Stoney approximation [31], for known elastic

moduli, which have already been measured by Brillouin spectroscopy (BS) [5].
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2 The principle of obtaining the residual stress

and the CTE of the coatings

Upon a temperature variation, the mismatch in the CTE between the coating and the

substrate, combined with the dilation constraint represented by the film adhesion to

the substrate, leads the sample to a progressive bending. The total bending depends

on the difference between the CTEs of the two materials, on their thicknesses and

their elastic moduli, and obviously on the temperature itself; it is well described by

the continuum mechanics theory for multilayers [32]. In the case of a bilayer formed

by a film much thinner than the substrate, such that the stress within the film can

be taken as approximately uniform, the stress within the coating can be expressed

in terms of the bending curvature radius R as:

σf (T ) =
Es

1− νs
tf
t2s

1

6
(

1

R(T )
− 1

R0

) (1)

In Eq.1 the sub-indexes s and f stand for substrate and film respectively, t is the

thickness, R(T ) the radius of curvature at temperature T and R0 the initial radius of

curvature at a reference temperature. E is the Young modulus and ν the Poisson’s

ratio. Eq. 1 is often known as Stoney’s equation [31, 33]. If the total film stress is

only due to the thermal component, it is given by:

σf = σthermal =
Ef

1− νf
(CTEf − CTEs)∆T , (2)

and, taking the derivative of eq. 2 over temperature:

dσf
dT

=
Ef

1− νf
(CTEf − CTEs) , (3)

such that:

CTEf = CTEs +
dσf
dT

1− νf
Ef

(4)
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Figure 1: a) Schematic principle of two initially parallel laser beams that are reflected by
a curved surface. b) the reflected beams are collected by the collecting objective
and recorded by the CMOS

Once the film stress is derived from the curvature measurement by eq. 1, eq. 4

is exploited to derive the CTE of the coatings. Equations 1-4, are valid only if the

elastic moduli are considered as temperature independent. A more realistic approach

would clearly consider this temperature dependence. However, it is not trivial to

obtain the temperature correlations of the elastic moduli, in particular in the case

of coatings, since they can completely differ from the ones of the corresponding bulk

materials. For this reason, here, the obtained CTE refers to the mean value of the

CTE over the imposed temperature range.

Residual stresses can possibly be superposed to σf . If, instead of R(T ) and R0,

the curvature radii after and before deposition are considered in eq. 1, the residual

stress can be determined.
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The key experimental step is, evidently, the correct determination of the sample

curvature; it is performed exploiting an array of parallel laser beams. The procedure

of obtaining the curvature is analyzed in the simplest case of two parallel laser beams,

with an initial spacing D0, that impinge on a sufficiently reflective surface at two

points A e B, at a nominal incidence angle θ with respect to the normal to the surface

(see Fig. 1a). If the surface is flat (R =∞), reflection occurs at an angle 2θ and the

two beams are again parallel, at distance D0. If the surface has a convex shape with

a finite radius R, the two reflected beams are no longer parallel. Simple reflection

implies that the angle α between the normals to the surface at the reflection points

A and B is related to the nominal incidence angle θ as:

sinα =
D0

2R cos θ
(5)

and that the angle between the two reflected laser beams is 4α. The beams are finally

detected by a CMOS sensor, supported by a measurement arm of length A. The

beams produce on the CMOS screen two spots, at distance d = d(R); for a perfectly

flat surface d = d(R = ∞) = d∞ = D0. It is intuitive, and it is detailed in the

Appendix, that the absolute sensitivity dd/d(1/R) increases with the arm length

A. However, a larger arm length also implies a stronger sensitivity to vibrations

and the need of a larger sensor (although d∞ does not increase).The insertion of a

converging lens, of focal length F , in the measurement arm has been considered,

with the objectives of reducing the spot distances, to allow a smaller CMOS sensor,

and to limit the arm length A, without losing sensitivity. The lens is at distance L

from the sample, and the light sensor is at a further distance K : A = L + K (see

Fig. 1b). In a typical experiment the sample has an initial radius of curvature Ri,

due to the residual stresses, which makes the beams to be reflected with an angle αi;

the distance between the spots is shifted by ∆di from d∞. Imposing a temperature

variation, the curvature changes to the final value Rf , the angle changes to αf ,

and the distance between the spots undergoes a further shift ∆df . The change
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of the curvature radius can be derived from the final displacement ∆df exploiting

the classical matrix optics used in ray tracing algorithms. This method adopts two

approximations: the paraxial one, i.e. the smallness of the deviation angle of the

beam with respect to the optical axis of the system, and the thin lens one. Both

approximations are fully appropriate: firstly, since (see eq. 5) D0 ∼ 1cm and R is at

least several meters, sinα - 10−3; secondly, the radius of curvature of the adopted

collecting lens is much larger than its thickness. The beams on the sample surface

and on the CMOS screen are related by a transfer matrix as follows:

z′
α′

 =

1−K/F L(1−K/F ) +K

−1/F 1− L/F


 z

2α

 (6)

where z, α, z′ and α′ are the distance of the beam and its deviation angle, from the

optical axis, respectively on the sample and on the CMOS. Eq. 6 gives

z′ = (1−K/F )z + 2α[L(1−K/F ) +K] (7)

and ∆df is given by (see Fig. 1b)

∆df = 2× (z′(2αf )− z′(2αi)) . (8)

Combining with eq. 5 we obtain

∆df
D0

B = (
1

Rf

− 1

Ri

) (9)

where B = (cos(θ))/(2[L(1−K/F ) +K]) is a pure geometrical factor that depends

on the angle of incidence of the beams, on the arm length and on the presence of

the focusing lens. If the lens is removed, eq. 9 becomes the standard equation for

measuring the curvature change of a sample by a 2D array of parallel laser beams
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Figure 2: Relative sensitivity d(∆df/d∞)/d(1/R) [m] map for different lens positions
L, sample curvature radii R, and for fixed arm length A = 0.4 m and focal
length F = 0.1 m. Continuous yellow lines delimit the white region where the
measurements are not possible (see Appendix). Dashed green lines indicate the
positions L = 0.24 m and L = 0.34 m of Fig. 9c and Fig. 9b respectively. The
right border (L = 0.4 m) is the lens-less case of Fig. 9a.

[16, 21]:

∆df
D0

cos θ

2A
= (

1

Rf

− 1

Ri

) (10)

In our experimental setup, K,L and F can be varied; an optimization process has

been performed, as detailed in the Appendix. Both cases K < F and K > F have

been considered. The image on the CMOS sensor can be shrinked, such that the

spot distance for a flat specimen, d(R = ∞) = d∞, becomes smaller than D0. The

absolute sensitivity d (∆df ) /d(1/R) has to be assessed against the physical pixel

size of the sensor; however, the performance of the experimental configuration is

better characterized by the relative sensitivity d(∆df/d∞)/d(1/R), which has to be

assessed against the sensor resolution, in terms of the number of sensor pixels. Fig.

2 presents the relative sensitivity obtained for a fixed A = 0.4 m and a fixed F = 0.1

m, varying L between 0.16 m and 0.4 m (the latter distance is the lens-less case).

The distance L = 0.34 m has been identified, which allows an image shrinkage by a

factor of more than 2 (as shown in the Appendix), therefore a significantly smaller
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sensor, with a relative sensitivity which is larger, by over 20%, than that of the

lens-less case with the same A (as shown by Fig. 2). This configuration (A = 0.4

m, F = 0.1 m and L = 0.34 m) is adopted in our measurements; it is suitable up

to strong curvatures (R down to 5 m or even less). As it can be seen from Fig. 2,

if the curvature is not very strong (e.g. R above 10 m) the lens can be shifted to

slightly smaller values of L, obtaining a further boost of the relative sensitivity.

Operationally, a small array of laser beams is adopted. From the image collected by

the CMOS sensor, the positions of the spots due to the various beams are obtained

by standard image analysis procedures, namely the centroid determination, and eq.

9 is exploited, taking for the value of ∆df/D0 the ratio averaged on all adjacent

spots.

The obtained curvature radius gives, by eq. 1, the total stress in the sample, from

which, by eq. 4, the average CTEf over the imposed temperature range can be

obtained. It must be remembered that the measured CTE refers to the in− plane

component of the liner expansion thermal coefficient. In anisotropic sample the in-

plane component can significantly differ from the out-of plane CTE, that must be

determined by other techniques.

As discussed in the following section and in Appendix B, different noise sources

related to the experimental setup severely affect measurement accuracy. However,

also surface roughness can result in inaccuracies of CTE determination when, instead

of the substrate uncoated surface, the film surface is probed. Roughness can induce

imperfections in the reflected beam spots shape, eventually affecting the accuracy

of the spot centroid calculation. In our case, PLD coatings on flat silicon substrates

show a very low surface roughness (i.e. few nanometers) that, added to multiple

frames average, limit this error source. Thickness inhomogeneities, instead, generally

influence measurement accuracy, resulting in an apparent increase or decrease of

curvature. All the W coatings analyzed in this work are characterized by a high

planarity, of the order of ± 10% the mean film thickness. This means that, for

400 nm thick coatings, a variation of ± 40 nm can eventually result in a change of
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Figure 3: Schematic diagram of the apparatus for CTE measurements. The heating mod-
ule is schematically shown in the inset of figure 4.

curvature radius of ± 400 m. This value is an order of magnitude higher than the

commonly measured curvature radii (i.e. few tens of meters), thus introducing a

small error in the CTE computation. Thickness inhomogeneities, instead, become

critical for micrometric thick coatings.

3 EXPERIMENTAL SETUP

The schematic diagram of the apparatus developed for CTE measurement is shown

in Fig.3. It consists of three main parts: a set of laser optics, a vacuum chamber for

thermal annealing processes and a sensor for laser beams positions measurement.

3.1 Laser beams array generation and collection systems

The laser beam array is generated by coupling a laser diode (∼ 5 mW output, 630 nm

wavelength) and a pair of etalons. The first etalon multiplies the input laser beam

in a direction, while the second etalon, oriented at 45◦ with respect to the first one,

duplicates the 1D array in the other direction, obtaining a 2D parallel laser beams

array. In our case, we create a 2 x 2 array of 1 cm equally spaced laser beams for

a total coverage of 1 x 1 cm2 measurement area. The array strikes with an angle of

10



incidence of 60◦ at the center of the substrate polished surface. The measurement

position is kept constant during the entire analysis process. The reflected beams

are recorded by the CMOS camera, through a collecting lens, as discussed above.

The adopted camera is characterized by a 4/3, 1.3 Megapixel sensor with a 1024 x

1248 digitized image. The acquisition rate of the sensor is 10 fps in the full format,

but it can be further increased up to 200 fps if only certain regions of interest are

selected. In this way, multiple measurements for a certain temperature step can

be acquired, so that the signal can be averaged on successive frames in order to

reduce the overall noise. The position of the beams on the CMOS is followed by

the determination of the centroid of each laser spot. The centroids are determined

by a classical centroid of intensity algorithm, which weights the intensity of each

pixel in the irradiation area over the total irradiated pixels. It has to be noted that

the accuracy of the method is deeply affected by noise sources (see Appendix B),

such as vibrations from the vacuum system or gas flow and fluctuations of pixels

intensity. The use of multiple laser beams array is thus crucial to guarantee high

measurement accuracy. With respect to standard laser scanning systems, where a

single laser beam is rastered across the entire sample surface [34], the use of multiple

beam array results in measurements that do not depend on the absolute position of

each laser spot on the sensor [35]. The laser beams strike all at the same time on

the sample surface and the differential beam spacing between adjacent spots, which

is less sensitive to the sample vibrations than the absolute position of the beam, is

adopted to measure the change of sample curvature. With our setup, we obtain an

accuracy of the beam spacing measurement of 0.09 pixels, that with our sensor of

6.66 x 6.66 µm/pixel stands for ±0.5 µm maximum deviation (see Appendix B).

3.2 Vacuum chamber and heating module

The vacuum chamber equipped with the laser beams array generation and collecting

systems described above accommodates the heating module for controlled thermal
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Figure 4: Temperature measurement of the heating module during the maximum temper-
ature ramp adopted for this work. The straight line refers to the measurement
by the K-type thermocouple in the point A; the circle scatter points indicate the
temperature measured by the pyrometer on the top of the heating plate (point
B)

annealing processes (see Fig. 3). The vacuum chamber is a 300 mm spherical cham-

ber supplied with two 2 viewport flanges at 60◦ orientation for the input and the

output of the laser beams. Other two symmetrical flanges provide connections with

the vacuum system and the gas inlet for controlled atmosphere treatments. A cou-

pled rotary and turbomolecular pumps are exploited to guarantee a base pressure of

5 x 10−6 mbar during each thermal treatments. The heating module can reach up

1200 ◦C. The temperature is measured by a thermocouple (type K) place under the

sample in the middle of the holding plate (5 mm thick). A standard temperature

ramp is shown in Fig. 4. The uniformity of temperature along the plate thickness

and lateral dimension has been assessed by a pyrometer measurement (red circle

marks). The heating and cooling rate are fixed at 40 ◦C/min and 20 ◦C/min re-

spectively. Temperature is measured every 0.5 s by an external acquisition system

triggered with the CMOS data acquisition by an ad-hoc developed Labview inter-

face. In this way, the centroid positions of each spot are automatically synchronized

with temperature data.
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Structure Morphology Deposition conditions Composition D (nm) ρ (g cm−3) Thickness (µm) M (GPa)

n-W Compact Vacuum metallic W 16 18 0.4 527
u-n-W Compact Vacuum W 90% - Ta 10% 11 13 0.4 500
u-n-W Compact He 70Pa annealed metallic W 7 12 0.38 353
a-W Compact He 70Pa metallic W < 2 nm 11 0.41 227
a-W Compact O2 5Pa W-O < 2 nm 11 1 265
a-W Porous He 100Pa metallic W < 2 nm 9 0.43 189

Table 1: Samples investigated in this work. Biaxial modulus is derived from Brillouin
spectroscopy [5], coating thickness by SEM analysis, crystallites dimension D by
XRD [5, 36] and mass density ρ. The coatings are deposited by PLD in vacuum
or in presence of background gases (He, O2) at different partial pressures as
reported in [28, 36].

4 RESULTS AND DISCUSSION

Firstly, we tested the performances of our experimental setup by investigating the

CTE of different coating materials. In particular, we analyze thermally evaporated

silver (Ag) films as the ones investigated in [17]. The Ag coatings have been de-

posited on a Si(100) 500 µm thick double side polished substrate. The thicknesses of

the coatings have been determined by Scanning Electron Microscopy (SEM), being

all sub-micrometric. Since Ag films have been deposited in very similar conditions

of [17], the biaxial modulus of the deposited material have been chosen between 50

± 10 GPa. The CTE of Ag films was investigated in the 25 - 150 ◦C temperature

range. We obtained a CTE of 38 ± 4 10−6 K−1, that well fits the result obtained

in literature of 33 ± 4 10−6 K−1. Starting from this result, we proceeded with the

characterization of W based coatings as described below.

4.1 Samples preparation, structural and elastic properties

All the nanostructured W coatings were deposited by PLD on silicon (Si) (100)

substrates 500 µm thick. For the σf computation of eq. 1 we consider E = 160

GPa, ν = 0.28 and CTE = 2.7 10−6 K−1 for this type of substrate [37]. The tailored

nanostructure is obtained tuning the background gas pressure (i.e. helium (He)

and oxygen (O2)) during deposition. For more details about the deposition process

of these coatings refer to [5, 28, 36]. As summarized in Tab. 1, the change of

film nanostructure from nanocrystalline (n-W) to amorphous-like (a-W) is achieved
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Figure 5: From the left: SEM top view and cross section images of nanocrystalline
columnar W, ultra-nano-crystalline W, compact amorphous-like W and porous
amorphous-like W samples analyzed in this work.

increasing the background gas pressure from vacuum conditions to 100 Pa of He

pressure. While up to 75 Pa of He the a-W morphology is still compact, at 100 Pa

of He pressure the a-W starts to become porous. O2 is exploited to obtain again

the a-W structure. As reported in [28], at O2 pressures of 5 Pa the W/O ratio

is sub-stoichiometric (i.e. about 2.4) and the film preserves its metallic nature.

As comfirmed by X-ray Diffraction (XRD) analysis, the W-O sample analyzed in

this work is characterized by an amorphous-like structure. Finally, the ultra-nano-

crystalline (u-n-W) structure is formed by thermal annealing of a-W pure W coatings

over their recrystallization temperature (i.e. 650 ◦C) or by adding tantalum (Ta) as

solid solution during coatings deposition. The detailed study of the recrystallization

behavior of a-W and the effect of Ta alloying on coating structure is reported in

[5]. Here, we limit our study to a 650 ◦C thermally annealed a-W and an u-n-W

coating with 10% of Ta concentration. The morphology and structural evolutions of

the coatings when going from n-W to compact and porous a-W are highlighted by

Scanning Electron Microscopy (SEM) analysis summarized in Fig. 5. SEM analysis

were exploited also to determine the coatings thicknesses that are summarized in

Tab 1.

These three different nanostructures are characterized by different mean crystallite

sizes (D), determined by XRD analysis using the Scherrer correlation. As shown in

14



Tab. 1, D goes from 16 nm in the case of n-W to below 2 nm for a-W, assuming

values between 7 and 11 nm in u-n-W samples. The film mass density ρ of pure

nanostructured W coatings was determined by quartz microbalance measurements

during deposition [36]. ρ decreases from 18 g cm−3 to 9 g cm−3 when going from

n-W to a-W. On the contrary, the mass densities of W-Ta and the u-n-W annealed

samples were derived from the lever rule and numerical simulations respectively, as

described in [5]. No direct measurmente of the ρ for the W-O coating is available.

However, since its nanostructure and morphology were found to be similar to the

one of pure a-W, ρ is fixed at the same value of 11 g cm−3.

The elastic properties (i.e. the biaxial modulus M = E/(1− ν)) of each W coating

have been determined by Brillouin spectroscopy. For a detailed description of the

derivation method see [5]. As it can be seen in Tab. 1, M is strictly related to

the changes of film mass density and crystallites dimension, going from 527 GPa for

n-W to 189 GPa for a-W. It has been shown [5] that in the regions where the mass

density does not significantly change, D is the key parameter that affects the elastic

behavior of the material and vice versa. This explain why different a-W and u-n-W

samples show different values of M .

4.2 Residual stress of nanostructured W coatings

The initial state of stress of the coatings is obtained by measuring the curvature

change between the uncoated and coated Si wafer at room temperature. In the case

of n-W, for instance, we found an initial state of compressive residual stress of 684

± 42 MPa. The compressive stress is in agreement with the residual stresses found

in other coatings deposited by PLD. As pointed out in different works [38, 39, 40,

41, 42], the higher the energy of the ablated particles, the higher the compressive

residual stresses are found in the PLD coating. For this reason, it is clear that

columnar nanocrystalline W samples, that are deposited in vacuum conditions, are

characterized by a higher compressive residual stress than the amorphous ones. In
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Figure 6: Residual stresses of nanostructured W coatings plotted versus film mass density.
The lower density of the film, which is related to a lower energy of the ablated
particles, implies a lower state of compressive stress.

the case of a-W coatings, indeed, the presence of a background gas during deposition

implies a loss of the ablated particles energy before impinging on the substrate. As

a result, the particles on the substrate are not enough energetic to be as closely

packed as in columnar film; the coatings grow with completely different structures

and morphologies, and they are characterized by a lower state of stress. We thus

evaluate the residual stresses of our PLD W coatings. Since the stress is strictly

related to the coating thickness, we reported in Fig. 6 only the residual stresses of

the coatings with aproximately the same thickness (i.e. 400 nm). They are plotted

versus film mass density. As it can be seen, the trend observed is fully consistent

with the explanation proposed herein. The residual stress, indeed, drops from 684

MPa for n-W, where the highest mass density is observed, to around 80 MPa for

the porous a-W structure when the mass density becomes the 50% the n-W one.

4.3 CTE characterization of nanostructured W coatings

For the CTE characterization all the elastic properties for both the film and the

substrate are considered temperature independent. In this way only a mean value

of the CTE over the imposed temperature range can be determined by this method.
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Figure 7: Thermal cycles performed on a-W sample. The black and the red lines are the
first and the second thermal cycles respectively. The blue dashed line represents
the linear interpolation of the stress-temperature curve adopted to derive the
mean CTE of the coating (see eq. 3).

The maximum temperatures reached for each samples have been chosen depending

on the recrystallization temperatures of each phase. It has been shown [5, 28] that

the crystallization process of a-W starts even at 450 ◦C, which is well below the

bulk W recrystallization temperature (i.e. 1400 ◦C). Therefore, a-W coatings are

annealed below 400 ◦C in order to avoid the formation of the α-W phase, hindering

crystallites growth that triggers the formation of the u-n-W structure. For n-W

and u-n-W no phase changes are observed below 1000 ◦C. However, the choice of

the maximum annealing temperature is also strictly dependent by the type of the

substrate material. In the case of Si, it is known that above 650 ◦C tungsten silicide

can form at W-Si interface [43], deeply affecting the CTE measurements. For this

reason all the measurements for n-W and u-n-W samples are limited to a maximum

temperature value of 650 ◦C.

As an example, Fig. 7 shows the thermal stress cycles measured for a-W sample.

The sample is heated from room temperature to about 360 ◦C and then cooled down

again to room temperature. This cycle has been performed twice. The thermal

stress is plotted versus annealing temperature. As it can be seen, the negative

intensity of the thermal stress stands for a compressive state of stress in the coating.
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This is always the case when the film shows a higher CTE than the one of the

substrate material. In this way, the coating tries to dilatate but it is constrained

by the substrate, developing a compressive stress which grows as the annealing

temperature increases. On the contrary, the stress becomes tensile during the cooling

cycle of the sample. A clear difference can be found between the first and the

second thermal cycle around the maximum annealing temperature. During the first

heating cycle the compressive thermal stress grows linearly with temperature till

around 290 ◦C. Over 290 ◦C a clear nonlinear behavior is observed. This trend

is exhausted during cooling, when the tensile state of stress starts to grow again

linearly with cooling temperature. This characteristic feature can be explained by

the beginning of stress relaxation processes, which lead to plastic deformation in

the 290 - 360 ◦C temperature range. The relaxation processes could indicate the

origin of grain growth or the triggering of defects diffusion processes which can be

present in a-W even at very low temperatures. The relaxation process is driven by

an enhanced surface and bulk atoms diffusion, which continues till the atoms reach

their equilibrium positions. The consequent volume shrinkage associated with the

developed plastic flow results in the development of a tensile state of stress which is

highlighted in the stress-temperature curve in Fig. 7 by the deviation from linearity

during heating. After plastic deformation behavior takes place, the sample is not

able to recover the same state of stress during cooling. Due to the development

of relaxation irreversible changes of the layer structure, the non linear part of the

stress curve can not be used to derive the CTE of the material. This trend is not

observed when the sample is subjected to a second thermal cycle between the same

temperatures, clearly indicating that no more relaxation processes take place. In

this way, the total stress temperature curve (i.e. heating and cooling) can be fitted

by a linear regression in order to derive the contribution dσ/dT of eq. 4 (dotted

blue line). Once the slope is determined, using the biaxial modulus of the film

summarized in Tab. 1, the mean CTE of the coating are obtained. The behavior

of the thermal stress upon heating is found in all the analyzed coatings. However,
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we observe that for higher increasing initial residual stress, higher number of cycles

are needed to exhaust the relaxation process of the stress and to obtain the linear

trend of stress versus temperature during both heating and cooling.

The results are shown in Fig. 8a. All the CTE of the coatings lie above the bulk

value of 4.2 x 10−6 K−1 reported in literature for polycrystalline W [44]. A clear

dependence of the CTE by the nanostructure is found. n-W has a mean CTE of

5.1 x 10−6 K−1, which is close to the bulk one. u-n-W samples are characterized

by an increase of the CTE to around 6.6 x 10−6 K−1. Finally, for a-W samples,

CTE reach a maximum value of 8.9 x 10−6 K−1, which is almost twice the bulk

one. The mean value and the error bars associated to each point are evaluated by

the multiple measurements performed on each sample. The uncertainty related to

the CTE derivation from the geometric values via Stoney’s equation (see eq. 1)

obviously also depends on the uncertainties related to the elastic moduli and the

thicknesses which must be independently measured.

Nanocrystalline metals are used to show a higher CTE with respect to the one of

the crystalline counterpart [17, 45, 46]. With respect to a crystalline bulk W, the

presence of a higher fraction of interfaces between the small grains deeply affect

the properties of the material [47]. The weaker bonding of grain boundaries atoms

modify the interatomic potential, lowering it and making it more asymmetrical. The

net result is a favoured movement of the atoms around their lattice positions upon

heating. This means an enhancement of the CTE, which is thus strictly related

to the volume fraction of grain boundaries. It has been shown that, in the case

of nanocrystalline metallic films, the CTE at grain boundaries can even increase

2 - 5 times the crystalline value [48, 49]. This dependence of the CTE with the

crystallites dimension is shown in Fig. 8b. As it can be seen, the overall observed

behavior is that as D decreses the CTE grows. n-W sample shows a CTE 1.2 times

the bulk one, increasing up to 2.1 times for a-W samples. This trend is qualitatively

and quantitatively in accordance with the reported dependence by D of the CTE

of some metallic films investigated in literature. As reported in [45], for example,
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copper films with 8 nm grains show a 1.8 times higher CTE than the corresponding

monocrystalline structure. In our case, u-n-W coatings with D between 7 and 11

nm are characterized by a CTE 1.6 ± 0.1 times higher the bulk W one. However,

when the amorphous regime is reached, the dependence of the CTE by the grain

boundaries fraction becomes not consistent to explain its further increase up to 2.1

times the crystalline value. The monotonically increasing behaviour of the CTE

in the a-W region is not worthy, since the investigation of the CTE of amorphous

materials still leads to controversial results in literature. In some cases [17, 50, 51],

starting from the coarse grained structure, an increase of the CTE is observed as

D decreases, but, when the amorphous region is reached, a drop of the CTE is

obtained. On the other hand, other works [45, 47, 52, 53], in accordance with

the trend observed in this work, reported a still higher CTE of the amorphous

phase wih respect to the nanocrystalline one. This is consistent with higher mean

interatomic distance, which means a lower binding energy. On the other hand, the

mean interatomic potential can be affected by the density of defects, that in turn

are related to the tensile or compressive residual stress [11, 54]. The porosity of

the film can be a key parameter in driving the thermal expansion of the coating,

inducing preferred dilatation directions, with a net result of an increase of material

CTE [53]. In our case, for a-W samples, in particular for the a-W samples deposited

at 70 and 100 Pa of He, the higher porosity degree of the films with respect to

the other samples can be identified as the main parameter to properly justify the

increase of the CTE above the u-n-W values. This increasing porosity is remarked

by the measured drop of the film mass density, that goes from 18 g cm−3 in n-W

to 9 g cm−3 in the amorphous region. The CTE trend we observed for W in the

different n-W, u-n-W and a-W is consistent with the behavior of other bcc metals

reported in literature, such as chromium and tantalum [19, 47].

Finally, as the variations of D and ρ modify the thermal expansion properties of the

material, they also affect the elastic behavior of the samples [5]. Here, referring to

Fig. 8c, we want to highlight the relationship between the CTE and the stiffness
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Figure 8: a) CTE of the analyzed samples. b) Dependence of he CTE to the crystallite
dimension of the sample c) The ratio between the measured and the bulk CTE
plotted versus the ratio of the coating and bulk stiffness. The three regions of
n-W, u-n-W and a-W are highlighted by the green, the blue and the red dotted
lines respectively.

of nanostructured coatings. So, in Fig. 8c the CTE is plotted versus the film to

bulk stiffness ratio (i.e. Efilm/Ebulk). Again, the three n-W, u-n-W and a-W regions

are clearly distinguishable. n-W sample is characterized by around 92% of bulk

stiffness; in the u-n-W region the stiffness ratio goes from 80% to 60%, while for
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a-W it goes below 47%, down to 27%. As a general qualitative trend, the softer the

material, the higher the CTE. This well known stiffness-CTE behaviour is reported

in several literature works [11, 17, 46]. However, this relationship is not linear as it

can be expected from eq. 2. The deviation from the linear proportionality can be

thus attributed again to the interplay between the crystallites dimension and the

mass density of the material.

5 CONCLUSIONS

In this work we performed a systematic study of the residual stresses and the coeffi-

cient of thermal expansion of nanostructured W based coatings deposited by PLD,

with the aim of elucidating the correlation between the CTE, the residual stresses,

the structural (i.e. crystallites dimension, mass density) and elastic properties of

the materials. In particular we analyzed pure W, W-tantalum and W-O coatings

with different nanostructures. In order to obtain the residual stress and the CTE

of the coatings, we developed a novel experimental setup based on the thermally

induced substrate curvature method. All the W coatings deposited by PLD are

characterized by a compressive residual state of stress. The stress is strictly corre-

lated to the specific nanostructure, becoming lower as going from n-W to a-W, due

to a lower energy of the ablated particles. We found that all the analyzed samples

show a higher CTE than the corresponding bulk form. n-W shows a CTE of 5.1

10−6 K−1, u-n-W a CTE of 6.6 10−6 K−1, while a-W a CTE between 6.6 10−6 K−1

and 8.9 10−6 K−1. The CTE is thus deeply affected by the crystallites size, growing

as the crystallites dimension decreases, where a higher fraction of grain boundaries

is present. This trend is fully consistent with the behavior observed for other bcc

metals, such as chromium and tantalum. In the amorphous region, where D does

not substantially change, the CTE further increases. Here, we highlight the rela-

tionship between the CTE and the film mass density. The higher porosity degree,

that characterize the amorphous coatings, plays a pivotal role in giving preferential
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dilatation directions, favouring thermal expansion. In addition, in accordance with

literature, we observed that as the material becomes softer, the CTE of the coating

increases.
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Appendix A: optimization of the experimental setup

The analysis of the measurement configuration, under the paraxial approximation

discussed in the text, is simple in the case in which the measurement arm, of length

A, does not include a lens. With reference to Fig 1b, in this case the distance of the
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two spots, on the light sensor, is

d = D0 + 2A sin 2α

i.e., exploiting eq. 5

d = D0 + 4A
D0

2R cos θ
.

Therefore

d

D0

=

(
1 +

4A

2R cos θ

)
and the relative sensitivity is

d (d/D0)

d (1/R)
=

4A

2 cos θ
. (11)

Since in the lens-less case d∞ = D0, the relative sensitivity of eq. coincides with

the more general definition d (d/d∞) /d (1/R). Eq. 11 shows that in the lens-less

case the relative sensitivity is simply proportional to the arm length A, and increases

when the incidence angle increases. However, for incidence angles approaching 90◦

(grazing incidence) the measurement becomes very delicate, and more sensitive to

various causes of error. In our set up θ = 60◦, a good compromise between sensitiv-

ity and robustness of the measurement. The relative sensitivity is thus simply 4A,

i.e. 1.6 m for A = 0.4 m and 3.2 m for A = 0.8 m.

It can be noted that the relative sensitivity does not depend on D0. The resolution

of the light sensor is measured by its number of pixels; the relative sensitivity can

be translated into a resolution in terms of 1/R (see Appendix B). The sensor size

must obviously be larger than D0, but not too much larger. A full exploitation

of the sensor area is achieved when the sensor size is, say, 1.5D0 to 2D0.The in-

dependence of the relative sensitivity from D0 might suggest that the value of D0

be irrelevant. If sensors of different sizes were available, with the same number of

pixels, measurements with different values of D0 would have the same relative sen-
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sitivity, i.e. would be of the same quality, provided the appropriate sensor size was

always selected. The only consequence of a larger, or smaller, D0 would be the need,

or not, of a larger sample. This is not completely true. The beams have a finite

lateral size, which is independent from D0, and if their distance becomes too small

they cannot any longer be resolved, and the measurement becomes impossible. The

beams become too close when D0 is small and/or the sample has a strong concavity.

If the minimum distance at which the beams can be resolved is, say, 2 mm, when

D0 is 5 mm the threshold is reached when d/d∞ is reduced to 0.4, while when D0

is 10 mm measurements are possible until d/d∞ is reduced to 0.2. The size D0=10

mm is adopted in our set up and in the following analyses.

The configuration with the lens is analyzed by an in-house developed Matlab

code which implements the ray tracing technique, under the same paraxial and thin

lens approximations, already mentioned. The results are presented here in detail

for fixed A = 0.4 m, F = 0.1 m and D0=10 mm, and varying L between 0.16 m

and 0.4 m (the latter distance is the lens-less case). The direct outcomes of the

ray tracing analysis are presented in Fig. 9, for the representative cases of L = 0.4

m (the lens-less case), L = 0.34 m (K < F ) and L = 0.24 m (K > F ). Some

qualitative considerations are already possible from these figures. A quantitative

analysis is presented in Figs. 10 and 2, which have the same scales, for all the L

values between 0.16 m and 0.4 m and for all the R values between ∞ (perfectly

flat sample) and R = +5 m (convex sample) and R = −5 m (concave sample).

The lens-less case of Fig. 9a corresponds to the right border of these figures, while

the two cases of Figs. 9b and c are indicated by dashed lines. Fig. 10a maps

the distance among the spots on the light sensor. It shows that that the lens at

L = 0.34m shrinks the image by a factor of more than 2. A band exists around

L = 0.3 m (K ' F ) in which the measurement is not possible because the spots

on screen cannot be resolved: although the beams are partially focalized, they still

have a finite size. In Fig. 10a, this band is delimited by the yellow lines, drawn

for d = 1 mm, and the same band is indicated in Figs. 10b, and 2. The limit at 1
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Figure 9: Rays trajectories for fixed arm length A = 0.4 m, focal length F = 0.1 m
and beams distance D0 = 10 mm, for the lens-less case (a), ad the lens at
L = 0.34 m (b) and L = 0.24 m (c). of Fig. 9c and Fig. 9b respectively.
In order to improve the readability, the representations are stretched in the
vertical direciton (the unit lengths of the two directions are indicated by the
black segments).

mm is not conservative, but the maps are drawn for d down to 1 mm to appreciate

the trends when approaching the measurability limit. In Fig. 10a the right part of

the map presents positive values, meaning that for K < F the beams impinge on

the sensor in the same order they have in the lens-less case (see Fig. 9b), while the

negative values in the left part indicate that that for K > F they impinge in the

reversed order (see Fig. 9c). Fig. 10b maps the distance variation d − d∞ (the

spot displacements); positive and negative values indicate the expansion and the

shrinkage of the image. From these two maps the map of the relative sensitivity,

Fig. 2, is derived. It shows that, perhaps unexpectedly, the behaviours for K < F

and for K > F are very different. For K < F , the relative sensitivity is always

larger than its value in the lens-less case. Starting with the lens very close to the

sensor, and shifting it towards larger distances, the sensitivy starts from the lens-less
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Figure 10: Maps of spot distance d ([mm], a)) and spot displacement d - d∞ ([mm], b))
on the light sensor, for different lens positions L, sample curvature radii R,
and for fixed arm length A = 0.4 m and focal length F = 0.1 m. Continuous
yellow lines delimit the white region where the measurements are not possible
because the spots are too close to be resolved. Dashed green lines indicate the
positions L = 0.24 m and L = 0.34 m of Fig. 9c and Fig. 9b respectively.
The right border (L = 0.4 m) is the lens-less case of Fig. 9a.

values and increases, at first very slowly, then more and more steeply approaching

the region at K ' F , in which the measurement becomes impossible because the

image is too shrinked. Conversely, when K exceeds F , a small interval of L exists, in

which the image is very shrinked and the sensitivity is high, but then the sensitivity

rapidly drops to values much smaller that those of the lens-less case. Figs. 9b and

c allow to appreciate these different behaviours. The optimal lens position is thus

found for K < F . In particular, the distance L = 0.34 m has been selected, in
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which the image is shrinked by a factor of more than 2 (see Fig. 10a), but remains

well readable up to strong curvatures (R down to 5 m or even less), either convex

or concave. For this value of L the relative sensitivity is larger, by over 20%, than

that of the lens-less case with the same A (as shown by Fig. 2).

Appendix B: centroid determination algorithm

The algorithm has been synthetically tested to determine the accuracy of the method.

The tests are shown in Fig. 11a in the case of (a) a fixed laser spot, (b) a fixed

laser spot with an artificial random background noise of 20% signal intensity and

(c) a laser spot with artificial random background noise of 40% signal intensity. As

it can be expected, the accuracy of the centroid determination is strictly related

to the quantity of background noise contained in the image, going from 0.04 pixels

to 0.12 pixels in the case of 20% and 40% noise respectively. Fig. 11b shows the

repeatability of the determination of the centroids of a fixed laser beam in the real

experimental apparatus when the vacuum system is operating (blue line). Here,

the accuracy is about 0.3 pixel. If the relative beam spacing (red line) is evaluated

instead of the absolute spot position, the accuracy increases up to 0.09 px. With our

sensor of 1280 x 1024 pixels, in which the spots are usually at a distance of around

800 pixels, the relative uncertainty δd/d∞ is of the order of 10−4. With a relative

sensitivity (d (d/d∞) /d (1/R)) of 1.6 m in the lens-less case and around 2 m in our

setup, this corresponds to an uncertainty δ(1/R) around 5 × 10−5 m−1. With a

typical curvature radius of 100 m, this means a relative uncertainty δ(1/R)/(1/R)

of 5 × 10−3, down to 5 × 10−4 when the curvature radius decreases to 10 m.
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Figure 11: a) Single spot centroid determination testing by synthetic code with increasing
background noise. b) the blue line refers to a single spot centroid determina-
tion in the real apparatus subjected to vacuum system vibration. The red line
is the differential spacing between two adjacent spots under the same operating
conditions.
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