

Nanostructured materials for nuclear fusion and laser-driven ion acceleration

Alessandro Maffini

Dipartimento di Energia, NanoLab, Politecnico di Milano, Italy

alessandro.maffini@polimi.it

Outline

NanoLab

2

1) NanoLab @ PoliMi

2) Metallic coatings for magnetic fusion

- W films for plasma facing components
- Rh mirrors for plasma diagnostics
- 3) <u>Targets for laser driven ion acceleration</u>
 - Enhanced acceleration regime
 - C foams for multi-layered targets
 - Experimental and numerical results

Politecnico di Milano

NanoLab

The Micro and Nanostructured Materials Laboratory (NanoLab) belongs to the Department of Energy of Politecnico di Milano

Politecnico di Milano (POLIMI) (www.polimi.it):

- Largest technical university in Italy, **6**th top scoring in Europe
- More than **35'000 students**, about 1400 faculty staff
- 32 BSc programmes, 34 MSc programs, 18 PhD programmes

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Nanolab @ PoliMi

Head of the lab: Carlo E. Bottani (Full Professor)

5 Associate professors:

M. Beghi, P.M. Ossi, A. Li Bassi, C. Casari, M. Passoni [1,2]

NanoLab

4 Post-Doc researchers:

V. Russo [2], D. Dellasega [1,2], L. Fedeli [2], <u>A. Maffini</u> [1,2]

6 PhD candidates:

A. Pezzoli [1], F. Tumino, L. Cialfi [2], E. Besozzi [1],

F. Inzoli [1], L. Mascaretti

+ about 7 undergraduate students/year

NanoLab approach: comprehend & control physics at the nanoscale to:

- Understand materials behavior in unconventional/extreme conditions
- New materials for advanced application (photovoltaics, nuclear power, ...)

Relevant projects in the frame of the WG4:

[1] EUROfusion consortium

First will materials and plasma facing components for **magnetic fusion**

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

[2] ERC grant "ENSURE"

Ultraintense **laser-matter interaction** for secondary **ion beam** production

POLITECNICO DI MILANO

erc

NanoLab

Analytical/numerical modelling of

laser-plasma interaction

Theoretical solid state physics

Areas of expertise

Thin films deposition and processing

<u>PLD Nd:YAG</u> λ=266 nm-1064 nm, 7 ns, 1.8 J

Alessandro Maffini

<u>PLD KrF + STM</u> λ=248 nm, 12 ns, 450 mJ

WG4 meeting, Belgrade, 19/04/2016

+ Evaporator+ Furnaces for thermal treatments

Material characterization

<u>SEM + EDX:</u> Samples morphology, Elemental Composition

Raman Spectroscopy: Structural properties Chemical composotion

- + <u>STM/STS</u> (surface analysis)
- + <u>AFM</u> (roughness)
- + Brillouin spectroscopy (vibrational)

6

1) NanoLab @ PoliMi

2) Metallic coatings for magnetic fusion

- W films for plasma facing components
- Rh mirrors for plasma diagnostics
- 3) <u>Targets for laser driven ion acceleration</u>
 - Enhanced acceleration regime
 - C foams for multi-layered targets
 - Experimental and numerical results

Magnetic confinement fusion

NanoLab ___

7

Milestone experiment: ITER (2022 ?)

- Started in 2013 in Cadarache (France)
- >18 billion € budget
- D-T fuel, 500 MW th.
- T ~ 10⁸ K
- n ~ 10¹⁴ nuclei/cm³
- $\tau_{\text{E}} \sim \text{seconds}$

- Radiation fields (~ 2x10³ Gy/s)
 14 MeV neutrons + γ and x-rays
- > Particle bombardment (~ 10^{18} m⁻² s⁻¹) α , energetic neutrals + T
- Intense thermal loads (~ 500 MW/m²)

Magnetic confinement fusion

ManoLab

Milestone experiment: **ITER** (2022 ?)

"We say that we will **put the sun into a box**. The idea is pretty.....The problem is, we don't know **how to make the box**".

Pierre-Gilles de Gennes (1991 Nobel laureate in Physics)

- Radiation fields (~ 2x10³ Gy/s)
 14 MeV neutrons + γ and x-rays
- > Particle bombardment (~ $10^{18} \text{ m}^{-2} \text{ s}^{-1}$) α , energetic neutrals + T
- Intense thermal loads (~ 500 MW/m²)

Magnetic confinement fusion

ManoLab

9

Milestone experiment: ITER (2022 ?)

"We say that we will **put the sun into a box**. The idea is pretty.....

.....The problem is, we don't know how to make the box".

- Radiation fields (~ 2x10³ Gy/s)
 14 MeV neutrons + γ and x-rays
- > Particle bombardment (~ 10^{18} m⁻² s⁻¹) α , energetic neutrals + T
- Intense thermal loads (~ 500 MW/m²)

Pierre-Gilles de Gennes (1991 Nobel laureate in Physics)

First wall materials

ManoLab

10

NanoLab

11

NanoLab

12

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

13

Pulsed Laser Deposition

ManoLab

14

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

W coating for tokamak first Wall

NanoLab

[1] D. Dellasega *et al.*, JAP 112 (2012) 084328

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

W coating for tokamak first Wall

NanoLab

+ T retention controlled by coating nanostructure!

[1] D. Dellasega et al., JAP 112 (2012) 084328

[2] M.H.J. 't Hoen, et al., JNM, 463, 989–992, (2015)
[3] A. Pezzoli, et al., JNM, 463, 1041–1044, (2015)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Diagnostic first mirrors

Optical diagnostics: analyse the light emitted from the plasma

- Essential for reactor operation & safety
- Data acquisition MUST be beyond radiological shield

Optical chain to extract the light

First Mirrors (FMs) : first ring of the optical chain

NanoLab

~80 mirrors planned in ITER

 FMs are critical components working in an extreme environment:

 Vital: Reflectivity shall not decrease

 Unavoidable Plasma-FM interactions!

Strict FMs requirements:

Few candidate materials (SS, Cu, Mo, <u>Rh</u>)

Different configurations (Single/Poly-crystal, <u>coating</u>)

Rh mirrors for optical plasma diagnostics

ManoLab

[A. Uccello, et al., JNM. 432 (2013) 261]

Rh mirrors for optical plasma diagnostics

ManoLab

19

Rh mirrors for optical plasma diagnostics

ManoLab

20

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Laser cleaning of diagnostic mirrors

NanoLab

21

- Excellent R_{Spec} recovery!
- · Different recipe for different materials
- Ok also for repeated cycles!

1) <u>NanoLab @ PoliMi</u>

2) Metallic coatings for magnetic fusion

- W films for plasma facing components
- Rh mirrors for plasma diagnostics

3) <u>Targets for laser driven ion acceleration</u>

- Enhanced acceleration regime
- C foams for multi-layered targets
- Experimental and numerical results

NanoLab

LASER PULSE: 10 fs -1 ps , I> 10¹⁸ W/cm²

TARGET Conventional: solid foil Novel: nanomaterial, gas jet, ...

LASER DRIVEN ION BEAMS:

- Proton imaging/radiography
- Warm dense matter
- Isotope production
- Cancer hadrontherapy
- Fast ignition in ICF

ACCELERATED IONS

- $E_{max} \approx 60 \text{ MeV (H}^+)$
- ps ion bunches, good collimation
- 10¹¹-10¹² ions/bunch
- Different mechanism proposed (TNSA, RPA, Collisionless Shock...)

A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys., **85** 751 (2013)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

LASER PULSE: 10 fs -1 ps , I> 10¹⁸ W/cm²

TARGET Conventional: solid foil Novel: nanomaterial, gas jet, ...

ACCELERATED IONS

- $E_{max} \approx 60 \text{ MeV} (\text{H}^+)$
- ps ion bunches, good collimation
- 10¹¹-10¹² ions/bunch
- Different mechanism proposed (TNSA, RPA, Collisionless Shock...)

LASER DRIVEN ION BEAMS:

- Proton imaging/radiography
- Warm dense matter
- Isotope production
- Cancer hadrontherapy
- Fast ignition in ICF

GOALS:

- Increase E_{max} (up to 100 MeV/u)
- Increase ion number
- High rep. rate, high brillance

A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys., **85** 751 (2013)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

NanoLab

LASER PULSE: 10 fs -1 ps , I> 10¹⁸ W/cm²

TARGET Conventional: solid foil Novel: nanomaterial, gas jet, ...

ACCELERATED IONS

- $E_{max} \approx 60 \text{ MeV} (\text{H}^+)$
- ps ion bunches, good collimation
- 10¹¹-10¹² ions/bunch
- Different mechanism proposed (TNSA, RPA, Collisionless Shock...)

LASER DRIVEN ION BEAMS:

- Proton imaging/radiography
- Warm dense matter
- Isotope production
- Cancer hadrontherapy
- Fast ignition in ICF

GOALS:

- Increase E_{max} (up to 100 MeV/u)
- Increase ion number
- High rep. rate, high brillance

- Deeper theoretical comprehension
- Progress in laser technology
- <u>Novel target concepts!</u>

A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys., **85** 751 (2013)

STRATEGIES:

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

NanoLab

26

LASER PULSE: 10 fs -1 ps , I> 10¹⁸ W/cm²

TARGET Conventional: solid foil Novel: nanomaterial, gas jet, ...

ACCELERATED IONS

- $E_{max} \approx 60 \text{ MeV} (\text{H}^+)$
- ps ion bunches, good collimation
- 10¹¹-10¹² ions/bunch
- Different mechanism proposed (TNSA, RPA, Collisionless Shock...)

LASER DRIVEN ION BEAMS:

- Proton imaging/radiography
- Warm dense matter
- Isotope production
- Cancer hadrontherapy
- Fast ignition in ICF

GOALS:

- Increase E_{max} (up to 100 MeV/u)
- Increase ion number
- High rep. rate, high brillance

- Deeper theoretical comprehension
- Progress in laser technology
- <u>Novel target concepts!</u>

A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys., **85** 751 (2013)

STRATEGIES:

Nanofoam attached targets

PLD @ _ ManoLab

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Goals and strategy of ENSURE project

NanoLab

Theoretical

Analytical descriptions, to gain insight into the relevant physics of the systems.

Particle-In-Cell (PIC) **numerical codes** to deal with multiscale physics & simulate "realistic" experiments

Experimental

Production of novel nanostructured material to enhance laser acceleration (e.g. nanofoam)

Characterization & understanding of novel/unconventional material features

Development of advanced micro- and nano-engineered targets

Laser driven ion acceleration experiments

In collaboration with external laser facilities

Novel applications to nuclear/materials science and engineering

Why foam-attached targets?

ManoLab

Conventional Target

Micrometric thick solid foil

- Overdense plasma sheet
- Surface interaction mechanisms

Target Normal Sheath Acceleration (TNSA)

- Most investigated acceleration scheme
- Laminar, low emittance, Broad energy spectrum
- Scaling with I >10²² W/cm² is unclear

Multi-layer, Foam-attached Target

Why foam-attached targets?

NanoLab

Conventional Target

Micrometric thick solid foil

- Overdense plasma sheet
- Surface interaction mechanisms

Target Normal Sheath Acceleration (TNSA)

- Most investigated acceleration scheme
- Laminar, low emittance, Broad energy spectrum
- Scaling with I >10²² W/cm² is unclear

Multi-layer, Foam-attached Target

μm solid foil + LOW DENSITY LAYER

- > Near critical plasma in front of the target:
- Volume interaction is possible

- Better coupling with the laser
- Enhanced fast electron production
- More ions and increased E_{max}

T. Nakamura *et al.*, Phys. Plasmas, **17** 113107 (2010) A. Sgattoni *et al.*, Phys. Rev. E, **85** 036405 (2012)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Foam-attached targets for Enhanced-TNSA

NanoLab

A. Sgattoni et al., Phys. Rev. E, 85 036405 (2012)

Foam optimization required

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

0.1

0.01

0.001

0.0001

0

dN/dE [a.u.]

Production of carbon foams

NanoLab

31

Building blocks: 10 nm nanoparticles

sp² network of disordered domains

A. Zani *et al.*, Carbon, **56** 358 (2013); I. Prencipe *et al.*, Plasma Phys. Control. Fusion **58** (2016) 034019 Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016 POLITECNICO DI MILANO

Production of carbon foams

ManoLab

32

A. Zani *et al.,* Carbon, **56** 358 (2013);

I. Prencipe et al., Plasma Phys. Control. Fusion 58 (2016) 034019

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Foam production capability

NanoLab

Acceleration experiment @ PULSER I - GIST

NanoLab

34

in collaboration with:

circular, p- and <u>s-polarization</u>

Systematic enhancement!

M. Passoni et al., Plasma Phys. Control. Fusion, 56 045001 (2014)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Systematic enhancement!

M. Passoni et al., Plasma Phys. Control. Fusion, 56 045001 (2014)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Thinner foams?
ManoLab

37

Piccante open source PIC code http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

38

-2 -1.4 -0.7 0 0.7 1.4

Piccante open source PIC code http://aladyn.github.io/piccante/ Sqattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

39

Piccante open source PIC code http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

40

Piccante open source PIC code http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

41

http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

43

http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

Piccante open source PIC code http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

NanoLab

45

http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

46

Piccante open source PIC code http://aladyn.github.io/piccante/ Sgattoni, Fedeli, Sinigardi, Marocchino

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

ManoLab

Higher energies with more homogeneous foam:There is room for optimization!

NanoLab

Micro- and nanostructured materials

First wall materials and components for magnetic fusion

- Functional coatings (Rh, W)
- Mimicking of re-deposited/ irradiated materials

Advanced targets for laser driven ion acceleration

- Carbon foams with near critical density
- Enhanced ion acceleration

Future perspectives:

- Further optimization (e.g. gradient foams, free standing foils)
- Experimental validation (tokamak/laser facilities)
- Ready to explore novel applications!

49

Thank you for your attention!

Additional slides

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Pulsed Laser Deposition

51

Schematic of PLD process:

- 1. Pulsed laser focused on solid target
- 2. Target ablation and plume formation
- 3. Plasma plume-laser interaction
- 4. Plume expansion (vacuum or gas background)
- 5. Deposition on a substrate, E_{at}≈1-100 eV

Film nanostructure can be controlled through:

- Laser fluence
- Background pressure
- Target to substrate distance/geometry

PLD features: Multiscale control of material properties Area cm², thickness mm

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Magnetic confinement fusion

ManoLab

D-T plasma confined with magnetic fields:

- $T = 10^8 K$
- n ~ 10¹⁴ nuclei/cm³, τ_E ~ seconds

Laser cleaning of diagnostic mirrors

NanoLab

- Satisfactory $\mathsf{R}_{\mathsf{Spec}}$ recovery over all analyzed wavelength range
- C films with different morphologies to demonstrate effectiveness and robustness of developed laser cleaning procedure

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Nanoscale analysis

ManoLab

Scanning Transmission Electron Microscopy

Raman spectroscopy

Nearly pure sp² network of topologically disordered domains : odd-membered rings and few chain-like structures

Ordered graphitic domains dimension ~ 2nm

A. Zani et al., Carbon, 56 358 (2013)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Raman spectroscopy of carbon films

- amorphous carbon (a-C): mixture of sp, sp², sp³ phases
- Raman spectrum of a-C dominated by sp² features: G and D peaks
- Raman spectrum of a-C controlled by the order, not by the amount of sp² phase and only indirectly by sp³ fraction

ta-C ta-C:H HC polymers sputtered a-C a-C:H no films graphitic C sp ²

NanoLab

55

NanoLab

- Similar Raman spectra, typical of a-C, at any pressure, both for argon and helium
- Some differences in <u>peak</u> <u>positions</u> and <u>relative</u> <u>intensities</u>
- Fitting procedure
 - Asymmetric Breit-Wigner-Fano (BWF) function for G peak
 - Lorentzian function for D peak [Ferrari AC, Robertson J, Phys. Rev. B 61 (2000) 14095]

A. Zani et al. Carbon 56, 358 (2013)

Raman spectra interpretation

NanoLab

57

[Robertson J, Mat. Sci.&Eng R 37 (2002) 129]

- Nearly pure sp² network of topologically disordered domains
- Some loss of aromaticity
- Odd-membered rings and few chain-like structures
- From I(D)/I(G) ~ 0,86 → L_a < 2nm (dimension of ordered graphitic domains)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Morphological analysis

ManoLab

Scanning Electron Microscopy

Argon

30 Pa

100 Pa GAS PRESSURE

150 Pa

Target-substrate distance 8.5 cm, deposition duration 20 min

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Morphological analysis

ManoLab

Scanning Electron Microscopy

Helium

30 Pa

100 Pa GAS PRESSURE

150 Pa

Target-substrate distance 8.5 cm, deposition duration 20 min

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Substrate coverage for thin foams

ManoLab

Problem:

incomplete substrate coverage below 10 $\mu{\rm m}$

- better foam packing
- Iower characteristic dimension of the «foam net»
- higher deposition rate
- ▶ higher density →higher P required

Density measurement

ManoLab

Thickness assessment

Areal density measurement

DENSITY EVALUATION

Thickness assessment: cross-sectional SEM images

Areal density measurement

Conventional quartz-crystal microbalance (QCM) technique unreliable for densities under 20 mg/cm³

> technique based on Energy Dispersive X-Ray Spectroscopy (EDS)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Energy Dispersive X-ray Spectroscopy (EDS)

Simple experimental equipment
 Direct non-destructive measurement

- **High spatial resolution**
- Applicability range

EDS for areal density evaluation

ManoLab

MODIFIED SURFACE GAUSSIAN MODEL (electron diffusion)

Yu. G. Lavrent'ev et al., J. Anal. Chem, 59, 600 (2004)

EDS for areal density evaluation

ManoLab

COATING
METHOD

$$\frac{I_{C,i}}{I_{C,i}^{ref}} = \frac{\int_{0}^{\tau} C_{i}\phi_{C,i}(\sigma) \exp(-\chi_{C}\sigma)d\sigma}{\int_{0}^{\infty} C_{i}^{ref}\phi_{C,i}^{ref}(\sigma) \exp(-\chi_{C}^{ref}\sigma)d\sigma}$$
SUBSTRATE
METHOD

$$\frac{I_{S,j}}{I_{S,j}^{ref}} = \exp^{(-\chi_{C}\tau)} \frac{\int_{\tau}^{+\infty} C_{j}\phi_{S,j}(\sigma) \exp\left[-\chi_{S}(\sigma-\tau)\right]d\sigma}{\int_{0}^{+\infty} C_{j}^{ref}\phi_{S,j}^{ref}(\sigma) \exp\left(-\chi_{S}^{ref}\sigma\right)d\sigma}$$

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Experimental issues

ManoLab

Electron penetration

Both layers must be probed

SELECTION OF ACCELERATION VOLTAGE

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

NanoLab

Target holders required to handle thin Al substrates (0.75-12 µm)

Target holders required to handle thin Al substrates (0.75-12 μm)

IN ALL THE EXPERIMENT PHASES

foam deposition

TAILORED FOR SPECIFIC FACILITY
UHI100 LIDyL
PULSER I GIST

Target holders required to handle thin Al substrates (0.75-12 μm)

IN ALL THE EXPERIMENT PHASES

- **b** foam deposition
- target transport
- target irradiation

TAILORED FOR SPECIFIC FACILITY

- UHI100 LIDyL
- PULSER I GIST

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Target holders required to handle thin Al substrates (0.75-12 μm)

NanoLab

Target holders required to handle thin Al substrates (0.75-12 $\mu m)$

Target holders required to handle thin Al substrates (0.75-12 μm)

- target transport
- target irradiation

TAILORED FOR SPECIFIC FACILITY

UHI100 LIDyL

ManoLab

Target holders required to handle thin Al substrates (0.75-12 μm)

- foam deposition
- target transport
- target irradiation

TAILORED FOR SPECIFIC FACILITY

- UHI100 LIDyL
- PULSER I GIST

POLITECNICO DI MILANO

ManoLab

GOAL proof of concept experiment on foam-attached targets @ moderate intensity

STRATEGY intensity scan ($I_L < 5x10^{19}$ W/cm²) for

- **b** foam-attached targets
- bare Al targets

Experimental setting

FOAM-ATTACHED TARGET

LC: Al 10 μm + **C foam** 23 μm, 6.8 mg/cm³ **HC: Al** 1.5 μm + **C foam** 12 μm, 6.8 mg/cm³

POLITECNICO DI MILANO

M. Passoni *et al.*, Plasma Phys. Control. Fusion, **56** 045001 (2014)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

POLITECNICO DI MILANO

- 1) Proof-of-principle of enhanced TNSA
- 2) TNSA-like MeV protons accessible with just 10¹⁶–10¹⁷ W/cm²!!!
- 3) Optimization required

M. Passoni et al., Plasma Phys. Control. Fusion, 56 045001 (2014)

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Acceleration experiment @ PULSER I - GIST

ManoLab

- extensive study of the effects of: GOALS
 - target properties \geq
 - laser intensity and polarization

intensity scan ($I_1 > 5 \times 10^{19} \text{ W/cm}^2$) for: **STRATEGY**

- bare Al and foam-based targets with different properties \succ
- circular, s- and p-polarization \geq

Experimental setup

POLITECNICO DI MILANO

Experimental setup @

78

intensity scan (I_L > 5x10¹⁹ W/cm²) for
≥ bare Al and foam-based targets with different properties
≥ circular, s- and p-polarization

POLITECNICO DI MILANO

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Acceleration experiment @ PULSER I GIST

Role of pulse properties Al (0.75 μm) + foam (6.8 mg/cm³, 8 μm)

- **b** pulse **intensity**
- pulse polarization: s, p and circular polarization

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016

Role of foam thickness (8-36 μm)

- Year State Sta
- irregular foam surface: polarization **definition**?
 - role of target nanostructure?

POLITECNICO DI MILANO

79

NanoLab

Simplified approach: uniform near-critical density layer

- Laser pulse: $a_0 = 18$ (= 7x10²⁰ Wcm⁻²), $w_0 = 4 \mu m$, $\tau_L = 33$ fs, $\alpha = 30^{\circ}$
- Al layer: thickness = 0,5 μ m, n=40 n_c
- Soam layer: thickness = 8 μ m, n=1 n_c

agreement for Al (c, s, p)
E_{max} enhancement with foam
significant dependence on polarization even with foam

more realistic foam model, including nanostructure, to describe such details

NanoLab

81

- performance enhancement for optimized foam properties
- Max proton energy ≈ 30 MeV with 30fs, 8J, 4x10²⁰ W/cm² pulses & multi-µm targets. Strong increase in mean ion energy, as well. Further optimization expected.
- Iow sensitivity to Al thickness, pulse polarization and contrast
- target concept compatible with high repetition rate experiments (?)
- ...exploration of these & other concepts, with focus on possible applications in material/nuclear science/engineering in the

"ENSURE" project (ERC Co Grant 2014, 5 years from Sept. 1st 2015)

ManoLab

Proton source foil protects rear surface from pre-pulse. Thickness limits conv. efficiency

Key, M. H., 2007, Phys. Plasmas 14, 055502.

Conclusions...

ManoLab

Laser driven ion acceleration experiments

- several intensity decades explored
- different experimental conditions

p-pol; foam: 1.2 n_c, 12 μ m

Conclusions...

ManoLab

Laser driven ion acceleration experiments

- several intensity decades explored
- **3** interaction regimes

p-pol; foam: 1.2 n_c, 12 μ m

Alessandro Maffini WG4 meeting, Belgrade, 19/04/2016